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Introduction

The goal of this book is a systematic and self-contained exposition of a theory of
linear elliptic boundary value problems in domains with isolated singularities on
the boundary.

Roots of the theory. Elliptic boundary value problems play an important
role in mathematical physics. Starting with the 18th century an innumerable num-
ber of works was dedicated to special boundary value problems. The theory of
general elliptic boundary value problems in smooth domains was developed in the
second half of the 20th century by I. G. Petrovskil [195], M. I. Vishik [246],
Ya. B. Lopatinskii [127], L. Hormander [86, 87], S. Agmon [3, 6], S. Agmon,
A. Douglis, L. Nirenberg |7, 8], F. E. Browder [37, 38], M. Schechter [213, 217],
J. Peetre [192], A. I. Koshelev [102], Yu. M. Berezanskil [26, 27], V. A. Solonnikov
[236], Ya. A. Roitberg [201] - [205], Ya. A. Roitberg, Z. G. Sheftel’ [207, 208], J.
Necas [184], J.-L. Lions, E. Magenes [126], B.-W. Schulze, G. Wildenhain [229],
I. V. Gel’'man, V. G. Maz’ya [74], and others.

Fundamental results in this theory are:

e a priori estimates for the solutions in different function spaces

e the Fredholm property of the operator corresponding to the boundary value
problem

o regularity assertions for the solutions

The construction of parametrices (approximately inverse operators) to the operators
of elliptic boundary value problems in domains with smooth boundaries resulted in
the development of the theory of pseudodifferential boundary value problems. This
theory has its origin in papers of A. P. Calderén, A. Zygmund [42], M. I. Vishik,
G. 1. Eskin [247, 248, 249], G. I. Eskin [67, 68], and L. Boutet de Monvel [34, 35].
One of the most important results in the theory of pseudodifferential boundary
value problems is the calculation of the index for elliptic boundary value prob-
lems in topological terms. A formula for the index of boundary value problems
in two-dimensional domains was found by A. I. Vol’pert [253]. M. F. Atiyah and
I. M. Singer [18] calculated the index of elliptic operators on compact manifolds
without boundary, while an index formula for elliptic boundary value problems
was derived by M. F. Atiyah and R. Bott [17]. We refer further to the papers of
M. S. Agranovich [10], A. P. Calderén [41], and L. Boutet de Monvel [35]). A
more recent treatment of the theory of pseudodifferential boundary value problems
is given, e.g., in the monographs of S. Rempel, B.-W. Schulze [200] and G. Grubb
[81].
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Parallel with the theory of general elliptic boundary value problems in smooth
domains, such problems in domains with singularities on the boundary were in-
vestigated. The question on the behaviour of solutions of elliptic boundary value
problems near boundary singularities is of great importance for many applications,
e.g., in aerodynamics, hydrodynamics, fracture machanics. The treatment of ellip-
tic boundary value problems in domains with singularities required a new theory.
On one hand, the methods which were developed for domains with smooth bound-
aries cannot be directly applied to domains with singularities. On the other hand,
many results of the theory for smooth domains are not true if the boundary of the
domain contains singularities.

The pioneering work in the development of a general theory for elliptic bound-
ary value problems in domains with angular and conical points was done by G. I. Es-
kin [65, 66], Ya. B. Lopatinskil [128], and V. A. Kondrat’ev [98, 99]. The first
two authors investigated boundary value problems in plane domains with angular
points applying the Mellin transformation to an integral equation on the bound-
ary. V. A. Kondrat’ev considered elliptic boundary value problems in domains of
arbitrary dimension with conical points. He applied the Mellin transformation to a
model problem connected with the boundary value problem and proved the Fred-
holm property of the operator of the boundary value problem in weighted and usual
L, Sobolev spaces of positive integer order. Furthermore, he described the asymp-
totics of the solutions near conical points. Analogous asymptotic representations
for solutions of elliptic boundary value problems in an infinite cylinder were found
in 1963 by S. Agmon and L. Nirenberg [9].

The gap between V. A. Kondrat’ev’s theory and applications was narrowed in
the works of V. G. Maz'ya and B. A. Plamenevskil [142, 143, 144, 147, 149].
These two authors extended the results of V. A. Kondrat’ev to other function spaces
(Lp Sobolev spaces, Holder classes, spaces with inhomogeneous norms), calculated
the coefficients in the asymptotics and described the singularities of the Green
functions. In the monograph of M. Dauge [53] L2 Sobolev spaces of fractional
order were admitted. Several papers of V. G. Maz’ya, B. A. Plamenevskii [150,
151, 152], V. A. Kozlov, V. G. Maz'ya (111, 112, 113], V. A. Kozlov (e.g.,
[105, 106, 107, 108]), V. A. Kozlov, J. RoSmann [115, 116]), and M. Costabel,
M. Dauge [51] contain a detailed analysis of the singularities of the solutions to
elliptic boundary value problems near conical points. Other results in this field are
estimates of the L,-means (V. A. Kozlov, V. G. Maz’ya [109, 110]), the Miranda-
Agmon maximum principle (V. G. Maz’ya, B. A. Plamenevskii [150], V. G. Maz’ya,
J. RoBmann [155]), and the construction of stable asymptotics (V. G. Maz'ya,
J. Rofmann [156], M. Costabel, M. Dauge [52]).

We also mention the books of P. Grisvard [79, 80], A. Kufner, A.-M. Sindig
[121], V. G. Maz'ya, S. A. Nazarov, B. A. Plamenevskii [138], S. A. Nazarov,
B. A. Plamenevskil [182] and S. Nicaise [186], where different aspects of the theory
of elliptic boundary value problems in domains with angular and conical points are
considered.

A theory of elliptic boundary value problems in domains with cusps or in quasi-
cylindrical domains was established in papers of V. I. Feigin [69], L. A. Bagirov and
V. L Feigin [23], V. G. Maz’ya and B. A. Plamenevskil [139, 147], A. B. Movchan
and S. A. Nazarov [170, 171, 173], J.-L. Steux [239, 240], and M. Dauge [56].
Elliptic equations on manifolds with cusps were studied further by B. W. Schulze,
B. Sternin, and V. Shatalov [227, 228|.
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Moreover, there are many works concerning other boundary singularities, such
as edges, polyhedral vertices, and domains of class C%!, which are not studied here.

The class of boundary value problems. A principal new feature of this
book in comparison with other monographs and papers on elliptic boundary value
problems in domains with conical points is the consideration of solutions in Sobolev
spaces of both positive and negative order.

In this book we consider boundary value problems for differential equations.
Avoiding the use of pseudodifferential operators ensures a more elementary charac-
ter of the book. Moreover, in most of applications of the theory of elliptic boundary
value problems only differential operators occur.

Pseudo-differential operators on manifolds with conical points were studied by
R. Melrose and G. Mendoza [164], B. A. Plamenevskil [199], and B. W. Schulze
[222]-[225]. A. O. Derviz [59], E. Schrohe and B.-W. Schulze [218, 219] extended
the results to pseudo-differential boundary value problems on manifolds with conical
points. They constructed algebras of pseudo-differential boundary value problems
and parametrices for elliptic elements. Studying the structure of the parametrices,
they obtained regularity assertions and the asymptotics of the solutions near the
conical point. We refer further to the work [163] of R. Melrose which is dedicated
to index theorems of Atiyah-Patodi-Singer type for pseudo-differential operators on
manifolds with conical points.

A boundary value problem in the classical form consists of a differential ‘equa-
tion (or a system of differential equations)

(1) Lu=f

for the unknown function (vector-function) v in a domain @ C R™ and some con-
ditions

(2) Bu=gyg

which have to be satisfied on the boundary 9. Here B is a vector (or matrix)
differential operator. The equations (2) are called boundary conditions.

In contrast to other monographs, we consider boundary conditions, where addi-
tionally to the unknown functions in the domain € also an unknown vector-function
u on the boundary 9§ appears, i.e., boundary conditions of the form

(3) Bu+Cu=g ondf.

Here B is a vector (or a matrix) differential operator on Q and C is a matrix
differential operator on 9. Naturally, boundary value problems of the form (1),
(2) are contained in the class of the problems (1), (3).

The reason for considering the boundary value problems of the form (1), (3),
which appeared first in the works of B. Lawruk [124], is that the adjoint problem
belongs to the same class of problems. This is not true if we restrict ourselves
to classical boundary value problems (1), (2). Let us consider, e.g., the Laplace
equation in a plane domain Q with the boundary condition

b1%+b2%=g on 09,
where 3/0v denotes the derivative in the direction of the exterior normal, 8/t
denotes the derivative in the tangential direction to 9%, and by, by are smooth
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real-valued functions satisfying the condition |b; |+ |b2| # 0 on Q. Then an adjoint
problem is

Av=f inQ,
ov 0
o ot
Clearly, if by # 0 on 01, then the unknown v; on 92 can be eliminated. However,
if by = 0 on a nonempty subset of 6}, then the adjoint problem can not be written
in the form (1), (2).
Note that the operators

(5 8)

of the boundary value problem (1), (3) form a subalgebra of Boutet de Monvel’s
algebra for pseudodifferential boundary value problems which consists of matrices
of the form

) (P39 &)

where L is a pseudodifferential operator, G is a singular Green operator, B is a trace
operator acting from £ to 99, C is a pseudodifferential operator on the boundary
0N, and K is a Poisson operator acting from 0% to §2.

The inclusion of adjoint boundary value problems has several advantages. For
example, it is not necessary to construct a regularizer in order to prove the Fredholm
property of the operator (4). It suffices to prove a priori estimates and regularity
assertions for the solutions of the boundary value problem (1), (3). The cokernel
of the operator (4) can be described by the solutions of the homogeneous formally
adjoint problem. Furthermore, with the help of the adjoint problem we are able
to construct an extension of the operator (4) to Sobolev spaces of an arbitrary
order. For elliptic boundary value problems of the form (1), (2) this extension
was constructed in papers of Ya. A. Roitberg [201] - [205] and Ya. A. Roitberg,
Z. G. Sheftel’ [207], [208].

v—>biv1 = g1, byvy) = g2 on ON.

The structure of the book. The book consists of three parts. In the first part
(Chapters 1-4) we consider the boundary value problem (1), (3) in a domain with
smooth boundary. We give a detailed proof for the equivalence of the ellipticity,
the Fredholm property of the operator (4) and the validity of a priori estimates for
the solutions in corresponding Sobolev spaces. In these assertions the operator (4)
is considered in Sobolev spaces of both positive and negative order.

The main step in the proof of the Fredholm property is the derivation of neces-
sary and sufficient conditions for the unique solvability of boundary value problems
with constant coefficients in the half-space x,, > 0 in Chapter 2. Here we use
Sobolev spaces of functions which are periodic in the variables z1,... ,2n—1. The
theorem on the unique solvability of boundary value problems with constant co-
efficients in the half-space implies, in particular, regularity assertions and a priori
estimates for the solutions. These are extended to elliptic problems with variable
coefficients in the half-space.

Chapter 3 deals with elliptic boundary value problems in smooth bounded
domains. Based on the results of Chapter 2, we obtain the Fredholm property
and regularity assertions for the solution. Furthermore, we prove the existence
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of Green’s functions for arbitrary elliptic problems of the form (1), (3) and get
a representation of the solutions by means of these functions. Finally, elliptic
boundary value problems with a complex parameter are considered in Chapter 3.
Such problems arise, in particular, from boundary value problems in a cone if one
applies the Mellin transformation |z| = r — )\ to the principal parts of the operators
L, B, and C. Spectral properties of the so obtained operator pencils are used later
in the study of boundary value problems in domains with conical points.

For the sake of simplicity, Chapters 1-3 deal only with boundary value problems
for differential equations of order 2m, where the order of the derivatives in the
operator B is less than 2m. In Chapter 4 we generalize the results to arbitrary
elliptic boundary value problems for systems of differential equations. Furthermore,
a special section in Chapter 4 is dedicated to boundary value problems in the
variational form.

The second part of the book (Chapters 5-8) is concerned with elliptic boundary
value problems in cylinders, cones and bounded domains with conical points. Chap-
ter 5 deals with boundary value problems in an infinite cylinder C = {(z,t) : = €
Q, —oco < t < +0o}, where Q is a smooth bounded domain in R™. First the coeffi-
cients of the differential operators are assumed to be independent from the variable
t. We obtain necessary and sufficient conditions for the unique solvability of such
boundary value problems in weighted Sobolev spaces, where also Sobolev spaces
of small positive and nonpositive orders are involved. Furthermore, we obtain the
asymptotics of the solutions at infinity and derive formulas for the coeflicients in the
asymptotics. These formulas contain special solutions of the homogeneous adjoint
problem. Here it turns out to be an advantage that we have considered boundary
value problems of the form (1), (3) with unknowns both in the domain and on the
boundary. Thus, we do not have to restrict ourselves to boundary value problems
for which the classical Green formula is valid. In the case of t-dependent coeflicients
satisfying the so-called stabilization condition at infinity we obtain the Fredholm
property of the operator to the boundary value problem, regularity assertions, and
a priori estimates for the solutions.

The results of Chapter 5 are applied in Chapter 6 to obtain analogous results
for elliptic boundary value problems in infinite cones and bounded domains with
angular or conical points. The main results concerning problems in bounded do-
mains are the Fredholm property of the operator (4) in weighted Sobolev spaces of
arbitrary integer order, regularity assertions and a priori estimates for the solutions,
asymptotic decomposition of the solutions near the conical points, and formulas for
the coeflicients in the asymptotics. Moreover, we study the Green functions of the
boundary value problem. Again for the sake of simplicity, we restrict ourselves in
Chapters 5 and 6 to boundary value problems for a 2m order differential equa-
tion with boundary operators By of order less than 2m. Chapter 7 is dedicated
to the generalization of the results to elliptic boundary value problems for sys-
tems of differential equations without such restriction on the boundary conditions.
Furthermore, elliptic boundary value problems in variational form are considered
here.

The class of weighted Sobolev spaces used in Chapters 6 and 7 does not con-
tain the usual Sobolev spaces without weight. Therefore, in Chapter 8 we consider
the boundary value problem also in another class of weighted Sobolev spaces with
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so-called inhomogeneous norms which contains the usual Sobolev spaces. We in-
vestigate the solvability of the boundary value problem in such spaces and find the
asymptotics of the solutions near the conical points.

The third part of the book consisting of Chapters 9 and 10 concerns boundary
value problems in domains with other isolated singularities. In particular, bound-
ary value problems in domains with point singularities of interior and exterior of
a cusp type are considered. Here the solvability of the boundary value problem in
special weighted Sobolev spaces depending on the geometry of the domain near the
point singularities is studied.

Acknowledgements. The authors are most grateful to L. I. Hedberg, P. Takag,
and G. Wildenhain for reading parts of the preliminary version of the manuscript
and for their valuable comments. The first author would like to acknowledge the
support of the Department of Mathematics of the Linképing University, the Royal
Swedish Academy of Science, the Swedish Research Council for Engineering Sci-
ences (TFR), and the Swedish Institute. The second author acknowledges support
from the Swedish Natural Science Research Council (NFR) and the Swedish Re-
search Council for Engineering Sciences. Last but not least, the third author wishes
to express his thanks to the Department of Mathematics of the Link&ping University
for the hospitality during various stages of the preparation of this book.



Part 1

Elliptic boundary value problems
in domains with smooth boundary



CHAPTER 1

Boundary value problems for ordinary differential
equations on the half-axis

This chapter deals with boundary value problems for linear ordinary differential
equations of even order 2m with constant coefficients on the interval (0, +00). It
prepares the treatment of boundary value problems for partial differential operators
in the half-space and in bounded domains of R™. We introduce the notion of regu-
larity and show that it is necessary and sufficient for the unique solvability of the
boundary value problem in Sobolev spaces of arbitrary integer order. Furthermore,
we study the connections between the formally adjoint boundary value problem
and the adjoint (in the functional analytic sense) problem.

1.1. The boundary value problem and its formally adjoint

In the beginning of the first section we describe the class of boundary value
problems on R = (0, +00) which are considered in Chapter 1. While in classical
boundary value problems only an unknown function u on the semi-axis has to be
found, the boundary value problems considered here contain also an additional
unknown vector v € C/. We present a Green formula for these problems. This
formula allows to introduce a formally adjoint problem which has the same form as
the starting problem.

1.1.1. Formulation of the problem. Let
2m
(1.1.1) L(D:) =) a; D]
3=0

be a linear differential operator of order 2m with constant coeflicients a;, where
aom # 0. Here D; denotes the derivative D, = —i0; = —i d/dt. Furthermore, let

i
Bi(Dy) =Y bk ; D}
=0
(k=1,...,m+ J) be linear differential operators of order pyj , and let

C= (Ck,j)
1<k<m+J, 1<;<J

be a constant (m + J) x J-matrix. Here uy are integer numbers. We allow u to be
negative. In this case the operator By, is assumed to be identically equal to zero.
We consider the problem

(1.1.2) LD ult) = f(t), >0,
(1.1.3) B(D¢)u(t)|e=0 + Cu =g,

9
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where B(D;) denotes the vector of the operators Bi(D,), ... ,Bm+s(Dy), f is a
given function on Ry, and g is a given vector from C™+7/. We seek a function u
on R} and a vector u = (uq, ... ,us) such that u is a solution of the differential
equation (1.1.2), and the pair (u,u) satisfies the boundary conditions (1.1.3) which
can be written in the coordinate form as

J
Bk(Dt)u(t)|t=O+ch,j uj =g, k=1,... m+J
=1

REMARK 1.1.1. Here and in the following we will not make a distinction be-
tween column and row vectors. In (1.1.3) u and g are considered as column vectors.

1.1.2. The Green formula and the formally adjoint problem. In order
to define the formally adjoint problem to (1.1.2), (1.1.3), we use a modification of
the classical Green formula.

First we consider the case px < 2m. Let

2m
L*(D,) = a; D}
j=0

be the formally adjoint operator to L. Furthermore, let D denote the vector
(1.1.4) D=(1,Dy,...,D™ ).

Then the operator B(D;) can be written in the form

(1.1.5) B(D))=Q-D

(here D is considered as a column vector), where the elements of the (m + J) X 2m
matrix

Q= (%,j) .
1<k<m+J, 1<j<2m

are defined by the coefficients of the operators By as follows:

o bk,j—l for j=1,...,u+1,
Uk = 0 for Jj>ue+1.

THEOREM 1.1.1. The following Green formula is satisfied for all infinitely dif-
ferentiable functions u, v on R, with compact support and all vectors u € C”,
v € (Cm+J .

(1.1.6) /Lu~5dt+ (B(Dt)uli=o + Cu, ) oy s
0

_ / w-TFvdt + ((Du)(0), P(Dy)vleco + Q@ 1) cam + (1 C* 1) -
J ,
Here P(Dy) denotes the vector with the components

2m—j
(1.1.7) Pi(Dy)=—i Y Gj4sDf j=1,...,2m,
=0

and Q*, C* are the adjoint matrices to Q and C, respectively.
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Proof: Let L; be the following differential operators:

j—1
(1.1.8) Li=) a.D; forj=1,..,2m, Lg=0.
=0
We prove by induction that
(1.1.9) / wIFodi = / (Lyu- — i Dju- o) dt — 3 (D;~u)(0) - (Pow)(0)
0 0 s=1

for smooth functions u, v with compact support. Obviously, (1.1.9) is satisfied for
j = 0. Suppose that (1.1.9) is valid for a given nonnegative integer j = jo < 2m.
Using the equations

Liju = —a,jD{u+Lj+1u )

Pjv = —igjv+ Dy Pjv
and integrating by parts, we get

(1.1.10) /(Lju-v— i Dlw - Pjv) dt

0
o]

— [(@ru-v- i DY Briw) di - (D}u)(0) - P 0).
0

Consequently, (1.1.9) is satisfied for j = jo + 1 and therefore for each nonnegative
integer j < 2m. In particular, for j = 2m we have

o0 oo 2m
(1.1.11) /u.mdt = /Lu-vdt = > (D;'u)(0) - (Pew)(0).
0 0 s=1

Furthermore, we have

(1.112)  (B(De)ult=0, v) gmes = (Q - (Pu)(0),2) ey = ((Pu)(0), Q") com
and

(1.1.13) (C,0) g = (1, C*0) s -

The equalities (1.1.11)—(1.1.13) yield (1.1.6). =

Let P(D;) be the operator given in the Green formula (1.1.6). By (1.1.7), there
is the representation

P=T-D
with the triangular matrix
a; a2m—1 G2m
ao .o 52711 0
(1.1.14) T=—i . ,
Qom - 0 0

It is natural to define the formally adjoint problem to (1.1.2)—(1.1.3) by the
operators on the right-hand side of (1.1.6).
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DEFINITION 1.1.1. Assume that the Green formula (1.1.6) is valid. Then the
problem

(1.1.15) LT (Dy)v(t) = f(t) fort >0,
(1.1.16) P(D)v(t)li=0 +Q v =9, C*uv=nh

is said to be formally adjoint to (1.1.2), (1.1.3).

By the representation of the elements g ; of the matrix @, the boundary con-
ditions (1.1.16) of the formally adjoint problem have the following form

m+J
P;i(Dy) v(t)|t=0 + Z brj—1vk=9; , i=1 ...,2m,
k=
#ijl—l
m+J
Zak7jvk:hj, jzl"")‘]‘
k=1

The formally adjoint problem has the same structure as the starting problem. How-
ever, the number of the boundary conditions and of the unknowns is greater than
in (1.1.2), (1.1.3).

1.1.3. Boundary operators of higher order. Now we consider the bound-
ary value problem (1.1.2), (1.1.3) without the restriction py < 2m on the orders of
the differential operators By. Let k be an integer number such that

K > 2m, k>maxug fork=1,... , m+J,

and let D) be the column vector with the components 1, D, ... ,Df‘l. Then the
vector B(D;) can be written in the form

(1.1.17) B(D,) = Q) .D®) |

where Q%) is a (m + J) x & matrix of complex numbers. Furthermore, according
to (1.1.11), we have

(1.1.18) /Lu-wz = /u-mdx+ (D"u)(0), (Pv)(0)) e »
0 0

where P(®) is the vector with the components P;(D),... , Pom(D;),0,...,0. We
introduce the (k — 2m) X k matrix

ag ai RN A2 0 e 0

0 ag . A2m—1 Q2m - 0
R =

0 0 e ag ai . aom

Obviously, the vector D(*~2™) [(D;) has the representation

(1.1.19) D=2m) [(D,) = R®) . D)
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Therefore, we obtain the following Green formula which is valid for all infinitely
differentiable functions u, v on R, u € C/, v € C™t/, w € CF~2™ :

o0

(1.1.20) / Lu- Bt + (D2 Lu)(0) , 1) o_am + (Bu)(0) + Ctt, 1) sy
0

= [u TFvd+ ((0D0)(0), (PP0)0) + (R) w+ (@) »)
0

Cr
+ (u,C*v)cv .
The boundary value problem
(1.1.21) LT (Dy)v(t) = f(t) fort >0,
(1.1.22) PR DYE)|,_y+ R w+ Q") v=g, Cu=h

is said to be formally adjoint to problem (1.1.2), (1.1.3) with respect to the Green
formula (1.1.20). In the case k = 2m this problem coincides with problem (1.1.15),
(1.1.16).

Note that the boundary conditions (1.1.22) of the formally adjoint problem
contain only derivatives up to order 2m — 1.

1.2. Solvability of the boundary value problem on the half-axis

The goal of this section is to prove that the regularity of the boundary value
problem (1.1.2), (1.1.3) is necessary and sufficient for the unique solvability of this
problem in the Cartesian product of the Sobolev space W(R.) with the set C”. We
give several equivalent definitions for the regularity and show that any boundary
value problem and its formally adjoint problem are simultaneously regular.

1.2.1. Sobolev spaces on the half-axis. Let C§°(R+), C5° (R, ) be the sets
of infinitely differentiable functions on Ry = [0,400) with compact support in

R, and R, respectively. We define the Sobolev spaces WL(R,) and Wi(R,) for
nonnegative integer ! as the closure of C§°(R.), C§°(Ry) with respect to the norm

Q1

) 1/2

i, = ([ 3107 o dt) "
o J=0

By Sobolev’s lemma, the space Wi(R.) is continuously imbedded into C*~*(R )
Consequently, the derivatives (Df ©)(0) ( =0,1,...,l—1) at the point ¢ = 0 exist
for functions from Wi(R, ). The subspace I;[j/'l2 (R4) can be characterized as the set
of all functions u € Wi(R, ) such that (DJu)(0) =0 for j =0, ... ,l— 1.

Analogously to W}(R, ), the space W(R) can be defined. Note that every
function u € W4(Ry) can be continuously extended to a function v € Wi(R). For
example, the function

(1.2.1) o(t) :{ u(t) for t >0,

1

x(t) Y5 $1(DIu)(0) ity for <0,

L1Ct=1(R, ) denotes the space of all functions on Ry which have continuous derivatives up to
the order [ — 1.
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where x is an arbitrary smooth function with compact support equal to one in the
interval (—1,+1), is an extension of u. This extension satisfies the inequality

[vllwim) < cllullwim,)

with a constant ¢ independent of u. An equivalent norm in Wi(R) for arbitrary
integer [ is

+oo
o1y = ( _/(1 +72)! |(-7:t—>fu)(r)|2dr)1/2

Here F;_,, denotes the Fourier transformation
+oo
(1.2.2) (Fioru)(r) = (2m)~1/2 / e T u(t)dt .
—00
1.2.2. Regularity of the boundary value problems on the half-axis.
We want to investigate the solvability of the boundary value problem (1.1.2), (1.1.3)
in the space W (R ) x C”. Here the notion of regularity of boundary value problems
plays an important role. To introduce this notion, we denote by M™ the set of the

so-called stable solutions of the homogeneous differential equation L(D;)u(t) = 0
which tend to zero as t — +o00. Obviously, M™ is the linear span of the functions

(1.2.3) t5 et | s=0,...,r;—1,

where 71, ... ,7, are the zeros of the polynomial
2m

L(r) = Z a; 77
Jj=0

in the upper half-plane Im 7 > 0 and r; denotes the multiplicity of 7;. The space M
can be also characterized as the set of all solutions of the equation L(Dy)u(t) =0
which belong to a Sobolev space Wi(R}.).

DEFINITION 1.2.1. The boundary value problem (1.1.2), (1.1.3) is said to be
regular, if
(i) The polynomial L(7) has no real zeros and exactly m zeros (counting mul-
tiplicity) of L(7) lie in the upper half-plane Im7 > 0.
(ii) The system of the homogeneous boundary conditions (1.1.3)
B(Dy) u(t)|t=o + Cu=0
has only the trivial solution (u,u) =0 in M* x C”.
REMARK 1.2.1. In particular, from condition (ii) it follows that the equation

Cu = 0 has only the trivial solution or, equivalently, the rank of the matrix C is
equal to J.

1.2.3. Equivalent definitions of regularity.

LEMMA 1.2.1. Let condition (i) be satisfied. We denote by 71, ... , 7, the zeros
of L(7) lying in the upper half-plane Im7 > 0 and by 71, ... ,7, their multiplicities.
Then the following assertions are equivalent:

1) The boundary value problem (1.1.2), (1.1.8) is regular.
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2) Foreveryg € C™+Y there exist exactly one function u € M* and one vector
u € C/ such that the boundary conditions (1.1.3) are satisfied.

3) The vector-polynomials T — (Bk(T), Chls -+ s Ck;yJ), k=1,...,m+J, are
linearly independent modulo the vector-polynomial 7 — (L_|_(7'),0, e ,O),
where

Li(r)=(r—m)™ (7 —7u)™.
This means, the equation
m+J

Z ﬁk (Bk(T),Ckyl, ,Cky]) = P(T) (L+(T),O,... ,0)

with an arbitrary polynomial P implies 1 = ... = B4y = 0.

Proof: From (i) it follows that 71 + --- 4+ r, = m. The set M™ consists of all
functions of the form

pn ri—1

u(t Z Z s 35 itT

j=1 s=0

T=Tj

Inserting this function and an arbitrary vector u into the boundary condition (1.1.3),
we get the algebraic system

r,—1
(1.2.4) ZZaJSaB +Cu=g.
7j=1 s=0 =T
with the unknowns o; 5 (j =1,...,4, s=0,...,r; —1) and u. Here we have used

the identity B(D;)0%e*™|;—o = 05B(7). The algebraic system (1.2.4) is uniquely
solvable for each vector g if and only if the corresponding homogeneous equation

Tj—].

aj s 05 B(T +Cu=0.
Y3 a

j=1 s=0 i

has only the trivial solution ojs =0 (j = 1,...,4, s =0,...,75, — 1), u = 0.
Consequently, the assertions 1) and 2) are equivalent.

Furthermore, the algebraic system (1.2.4) is uniquely solvable if and only if the
homogeneous algebraic system with the transposed coeflicients matrix

m+J
(125) Y B0 Bi(r) =0, j=1,... ,;8=0,...,7; —1,
t =7j
m+J
(126) ) Brck; =0 j=1,...,J
=1
has only the trivial solution 8; = ... = B+ = 0. Here the equations (1.2.5) are
satisfied if and only if the numbers 7;, 7 = 1,... ,u, are zeros of the polynomial

Z‘:{I Bk B (1) with the multiplicities r; or, with other words, if
m+J

> Bx Bi(r) = P(r) Ly (7).
k=1

This proves the equivalence of the assertions 2) and 3). m
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Note that the coefficients of the polynomial L. analytically depend on the
coefficients of L.
We give two examples for regular boundary value problems on the half-axis.

Ezxample 1. The boundary value problem
—u"(t) + n?u(t) = f(t) fort >0,
aw'(0) +bu(0) +Cu=gyg

withn >0,a=(a1,...,a541), b= (b1,... ,by11) € C/*! is regular if and only if
the matrix
am — by ¢, o ClLg
azn — be c21 o C2
(Q’fl - Q7 C) = . .
aj1m—byyr crjr1n 0 Cigrg
is regular.

Ezample 2. Let L(D;) be a differential operator of order 2m satisfying condition
(i) and let Bi(7), k =1,...,m, be polynomials of the form

(1.2.7) By (1) = p(1) pr(a(7)) ,

where p, pr and q are polynomials and the degree of py, is equal to k—1. We suppose
that

(1.2.8) p(r) #0 forj=1,...,p4,
where 7 , ..., 7, denote the zeros of L(7) in the upper half-plane and that
q(ry) #alme) i 7 # 7, jk=1,...,4
q' (1) #0 if 7 is a zero of L(7) of multiplicity r; > 1, j=1,... ,u.
Then the boundary value problem
L(Dy)u(t) = f(t) fort>0,
Br(Du(t)|t=o =gx (k=1,...,m)

is regular.

Proof: Suppose that there exists a polynomial P(7) such that

> BiBi(r) =p(r) Y Brepe(a(r)) = P(r) Ly.(7)
k=1

k=1
Then by (1.2.8), the polynomial

(12.9) > Bepr(a(r))
k=1

is divisible by L (7). Since the expression (1.2.9) is a polynomial of degree < m—1
relative to (1), we can write this expression as a product of at most m—1 factors of
the form ¢(7) —c. Hence the polynomial (1.2.9) is either equal to zero or there exists
a constant ¢ such that ¢(7) —c is divisible by a product (7 —7;)(7 — 7). The second
possibility contradicts our assumption on ¢. Therefore, we get 8; = ... = G, = 0.
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This proves the regularity of the boundary value problem. m

In the special case p(7) = 1, q(7) = 7, pr(7) = 771, we obtain the regularity
of the Dirichlet boundary conditions Df‘lu(t)[tzo = gr, k = 1,...,m, for the

operator L(D;).

1.2.4. Solvability of regular boundary value problems on the half-axis
in a Sobolev space. Let [ be an arbitrary integer number, [ > 2m, [ > max p;+1.
Obviously, the operator (u,u) — (f,g) of the boundary value problem (1.1.2),
(1.1.3) realizes a linear and continuous mapping

(1.2.10) A WHRL) x €7 — WE2m™(R,) x €™

If the boundary value problem (1.1.2), (1.1.3) is regular, then the operator (1.2.10)
is injective. We prove that the operator A of a regular boundary value problem is
an isomorphism.

THEOREM 1.2.1. The following assertions are equivalent:

1) The boundary value problem (1.1.2), (1.1.3) is regular.

2) For every f € W™ (R,), g€ C™ 1> max(2m,p +1,... s +1,)
there ezists exactly one solution (u,u) € Wi(Ry)xC’ of the problem (1.1.2),
(1.1.8). In other words, the operator (1.2.10) is an isomorphism.

Proof: First we show the implication 1) = 2). Let f be an arbitrary function
from W.™?™(R, ) and let f; € W) ™2™ (R) be an extension of f to the whole t-axis.
Then

v =

2 (L0 Fe )

is a solution of the equation L(D;)v; = fi in R. Since L(7) # 0 for real 7, there
exists the supremum

co =sup|(L+ 7)™ L(T)7Y .

Consequently, v; € WX(R) and the restriction v of v; to the half-axis R, belongs
to Wi(R,). By Lemma 1.2.2, there exists a solution (w,u) € W}(R.) x C’ of the
problem

L(Dy)w(t) =0, t>0,

B(D)w(t) + Cu= g — B(D:)v(t)|t=o -
Hence (u,u) with u = v + w is a solution of the boundary value problem (1.1.2),
(1.1.3). The uniqueness of this solution follows from Defintion 1.1.1.

Now we prove that assertion 2) implies 1). Let us start with the condition (i)
of the regularity. From 2) it follows, in particular, that

(1.2.11) lullwir,) < elllullyi-2m e,

for every u € W4(R,) vanishing near t = 0 with a constant ¢ independent of u.
Assume that the polynomial L(7) has a real zero 79. We set

u(t) = ue(t) & et ¢, (t),
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where (. (t) = ((et), ¢ is a given function from C§°(Ry), and ¢ is a positive real
number less than one. We prove that

(1.2.12) el < ||u€||§V5(R+) <cge™?
with positive constants ci, ¢; depending only on [, 79, and ¢. Obviously,
”ue‘“?/vzl(RJr) 2> “ua”%Z(R+) = ”CEH%Q(R” =e! “C”sz(]R.,,) :

Furthermore,

MN

luellivye..)

[ee)
/|D~Z (¢(et) e') | dt < = Z/‘ea Di(¢ iTot/E)l2dt
0

c2(1+ Tg ) ||€||2W21(R+)

o

<

ml»—-“’

This proves (1.2.12).
Since L(D;)e'™? = 0, the function Lu. has the form

2m 2m
(1.2.13) Luc = €™ "¢; Dl = €™ty "¢ (—ie)’ (V) (et)
j=1 =1

with coefficients ¢; depending only on 7 and on the coefficients of the differential
operator L. From this representation it follows that the norm of Lu, in Wi=?™(R,)
has an upper bound independent of €. This contradicts the inequalities (1.2.11) and
(1.2.12). Hence the polynomial L(7) has no real zeros.

Furthermore, it follows from assertion 2) that the problem

Lu=0 in R+,
Bu|t=0 + Cy = g

has a unique solution in W}(R4) x C” for every given g € C™*”. Since the set of
the solutions of the equation Lu = 0 in W(R.) coincides with M, we have

u ri—1
= T o]
j=1 s=0 =T
where 71, ... ,7, are the different zeros of the polynomial L(7) in the upper half-
plane Im7 > 0 and ry,... ,7, are their multiplicities. Inserting this function into

the boundary condition (1.1.3), we get the linear algebraic system (1.2.4). This can
be uniquely solvable only if the number of the unknowns coincides with the number
of the equations, i.e., if 71 + - - + 7, = m. Thus, condition (i) in Definition 1.2.1 is
satisfied. Condition (ii) is obviously satisfied. m

LEMMA 1.2.2. Assume that the boundary value problem (1.1.2), (1.1.3) is reg-
ular. Then for every u € WA(Ry), | > 2m, | > max ug + 1, u € C’ the following
inequality is valid with a constant ¢ independent of u and u :

(1:214) ullwy,) + lules < e (1D ullygom g, + [BO)ul—o +Cul )

If c is the best constant in (1.2.14), then 1/c is a Lipschitz-continuous function of
the coefficients of the operators L, B and C.
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Proof: The estimate (1.2.14) immediately follows from Theorem 1.2.1 and from
the closed graph theorem. Assume that the differences between the coefficients of
the operator A and the corresponding coefficients of another operator A’ are less
than e. Then the inequality

1218) (A= A) (ww)lyimm,yeeres < 0 (lulwi,) + el )

holds for every u € Wi(R,), u € C’. Here the constant ¢; depends only on I, m, p,
and J. Let ¢ be the best constant in (1.2.14) for the operator A and ¢’ the best
constant for the operator A’. By means of (1.2.15), we get

HU”W21(R+) + lules < ¢ ||A(u7"_/f)”W21—2m(]R+)xcm+J
< ¢ (I (0, W)llyzsr s + NOA = A) () =20y ot )
<c(1+ecice) || A (u, g)[IWé—Zm(R+)XCm+J .

Hence ¢’ < ¢(1+c;1ce) and, analogously, ¢ < ¢/(1+c;ce). Therefore, ¢ and ¢’ satisfy
the estimate

1 1
l <ce.

PR

c
This proves the lemma. m

1.2.5. Solvability of the formally adjoint problem. As we have shown,
the regularity of the boundary value problem (1.1.2), (1.1.3) is necessary and suffi-
cient for the unique solvability of this problem in Wi(R ) x C’. We prove that the
regularity is also necessary and sufficient for the unique solvability of the formally
adjoint problem.

THEOREM 1.2.2. The boundary value problem (1.1.2), (1.1.3) is regular if and
only if the formally adjoint problem (1.1.21), (1.1.22) with respect to the Green
formula (1.1.20) is regular. In particular, in the case max pr < 2m the boundary
value problems (1.1.2), (1.1.3) and (1.1.15), (1.1.16) are simultaneously regular.

Proof: Since L™ (1) = L(7), condition (i) in Definition 1.2.1 is satisfied simulta-
neously for the operators L and L. We show that the validity of condition (ii) for
the boundary value problem (1.1.2), (1.1.3) implies the validity of this condition for
the formally adjoint problem (1.1.21), (1.1.22). Let (v, w,v) € M+ xCr=2m xCm+/
be a solution of the homogeneous problem (1.1.21), (1.1.22). Then the Green for-
mula (1.1.20) yields

(1.2.16)
/L(Dt)u -odt + ((D("“r“)m)Lu)(0),_zg)(cn_2m + ((B(Dy)ule=0 + Cg),y)CmH =0
0

for arbitrary u € W§(Ry), u € C’. By Lemma 1.2.1, there exist a function u € M*
and a vector u € C’ such that B(D;)ult=o + Cu = v. Hence (1.2.16) implies v = 0.
Using the fact that the last x — 2m components of the vector P(*) are zero and the
last k — 2m rows of the matrix (R(*))* form a triangular matrix with the numbers
Qo 7 0 in the diagonal, we can conclude from the equation

P(“)vlf,:o + (R(””))*w + (Q(n))* v=0
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that w = 0. Furthermore, by Theorem 1.2.1, we can choose the function u and the
vector u in (1.2.16) such that L(D;)u(t) = v for t > 0 and B(D;)u|t=o + Cu = 0.
Then we get v = 0.

Consequently, the homogeneous problem (1.1.21), (1.1.22) has only the trivial
solution. Analogously, the validity of the condition (i) for the formally adjoint
problem implies the validity of this condition for the problem (1.1.2), (1.1.3). m

COROLLARY 1.2.1. Assume that the boundary value problem (1.1.2), (1.1.3) is
regular. Then the formally adjoint problem (1.1.21), (1.1.22) is uniquely solvable
in WAR,) x C™H x C*=2™ for any given f € WL >™(R,), g € C*, h € C/,
1 > 2m, and the solution (v, w,v) satisfies the estimate -

lollwges) + lwlee—an + lwlenes < ¢ (I lwi-smga,) + lgles + [Bles)

with a constant c independent of f, g and h.

1.3. Solvability of regular problems on the half-axis in Sobolev spaces
of negative order

In the sequel, we restrict ourselves to boundary value problems, where the
order of differentiation in the boundary conditions is less than 2m. Then the Green
formula (1.1.6) is valid.

It was proved in the foregoing section that the operator A of a regular boundary
value problem realizes an isomorphism Wi(R,) x C7 — Wi ?™(Ry) x C™* for
arbitrary integer [ > 2m. This assertion can not be immediately extended to the case
l < 2m, since the values of the functions u, D;u, ... ,thm_lu and, consequently,
also the values of Bju, at the point ¢ = 0 do not exist for functions u from Sobolev
spaces of lower order. To avoid this difficulty, we introduce spaces of pairs (u, ¢),
where u belongs to a Sobolev space on the interval (0, +00) and ¢ is a vector from
C?™. Here the components of the vector ¢ substitute the values of the derivatives of
u at the point ¢t = 0. We construct an extension of the operator A to the Cartesian
product (or a subspace of the Cartesian product) of a Sobolev space of arbitrary
integer order and the set C2™ x C” and prove that this extension is an isomorphism
if and only if the given boundary value problem is regular.

1.3.1. Sobolev spaces of negative order. Let [ be an arbitrary nonnegative
integer. Then we define the space W, (R,) as the dual space of W3 (R, provided
with the norm

o1
sty = 500 { 1w, V), | = v EWE R, Pollwye,) =1}
Here (-,-)r, denotes the extension of the scalar product in Lz(R.) to pairs (u,v)

from the product space Wy ‘(R )x Wi (R, ). Analogously, the space Wi(R)* will
be defined as the dual space of Wi(R,.).

Furthermore, we define the space Wzl’k(]R+) for arbitrary integer [ and arbitrary
noninteger k as follows.
If [ > 0, then W (R,) is the set of all

('LL,?) = (U,¢1, a¢k)a
where u € Wi(Ry) and ¢ = (¢1,... ,$%) is a vector in C* satisfying the condition
¢; = (D]"'u)(0) for j < min(k,1).
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The norm in W2* (R, ) is defined as

(1.3.1) 1, )l sy = il + 18l -

Since only the components ¢; with index j > [ can be chosen independently of u,
we can identify the space W* (R, ) with W}(R,) if [ > k and with W}(R) x Ck~
if0<l<k.

In the case [ < 0 we set We*(Ry) = W,y !(Ry)* x C*F and

(1.3.2) s Dy = Nellyt gy -+ 1lcs -
In particular, with this notation, we have
< 1.0 [ WRY) for I > 0,
‘VQ(R+)"{tV;%R+y< for [ < 0.

Note that the space Wé’k(R.l.) is complete for arbitrary integer k,l, £ > 0. It can
be easily seen that the space W.'*(R,) is continuously imbedded into Wé’k(R.,_) if
l1 > I. Moreover, the following assertion holds.

LEMMA 1.3.1. The space W'F(Ry) is dense in Wor(Ry) if Iy > 1.

Proof: 1t suffices to prove the lemma for I; = I+ 1. For Il < 0Oand ! > k
the assertion of the lemma is trivial. Therefore, we restrict ourselves to the case
0 <1 < k in the proof. Let

(u,¢) = (u, w(0), ..., (Dy  u)(0), drs1, - .-, Pr)

be an arbitrary element from W2*(R,). Since WS (R, is dense in WE(R,), there

exists a sequence {u;}72; C WL (Ry) which converges to u in Wi(R,.). We set

¢j = (Dlu;)(0) and define the functions u; . by the equality
1 . t
Uje(8) = uj(8) = 53(c; = Pi41) (lt)lx(g),

where x is an arbitrary smooth function with compact support equal to one in
the interval 0 < ¢t < 1, and ¢ is a positive integer. It can be easily verified that
(Dlu; )(0) = ¢41 and u; e — u; in WE(Ry) as e — 0. Consequently,

{(uj,s uj,€(0)> ) (Di'LLj‘E)(O), ¢l+2 g 7¢k)}§i1

converges to (u, ¢) in WL (Ry) as € — 0. This proves the lemma. m

COROLLARY 1.3.1. The set
(1.3.3) { (u,u(0), (D¢u)(0), ... ,(DF'u)(0)) + ue CP(R,)}
is dense in Wo* (Ry).

Proof: For | > 2m this assertion follows immediately from the density of
C°(Ry) in WE(R4). If I < 2m, then by Lemma 1.3.1, the space W3 ™" (Ry) is
dense in W2*(R.), while the set (1.3.3) is dense in W;™"(R,). This implies the
density of the set (1.3.3) in W *(R,). m
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1.3.2. Extension of the operator of the boundary value problem to
Sobolev spaces of arbitrary order. In the following, we assume that ord By, <
2m for k =1,... ,m+J. Since the space W-*™ (R ) can be identified with W4(R.)
for | > 2m (by means of the bijection (u, (Du)(0)) < u), the operator (1.2.10) can
be considered as a linear and continuous mapping

(1.3.4) A WE™RL) x C — WEP™(R,) x C™H 1> 2m.

Now we construct an extension of this operator to the space Wi?™(R,) x C™+7
with [ < 2m. We start with the operator

(1.3.5) W™ (R4) > (u, (Du)(0)) — Lu € Wh(Ry), 1> 2m,
which will be also denoted by L in what follows.

LEMMA 1.3.2. The operator (1.3.5) can be uniquely extended to a continuous
operator

(1.3.6) L: WH™R,) - Wi YR,

with arbitrary integer I < 2m. For (u,¢) € WP™(R,), | < 0, the functional
L (u,¢) = f is given by the equality

(137) (f7 U)]R+ = (ua L+U)]R+ + (Qa (PU)(O))C2m ) v E ng_l(R-i-)v

while in the case 0 < 1 < 2m we have

oo 2m

(1.3.8) (f,’l))R+ :/(Lluﬂ—zDium) dt + Z ¢;(P;v)(0)

0 Jj=l+1

for allv € W2m~YR,). (Here P, L; are the differential operators defined by (1.1.7)
and (1.1.8), respectively.)

Proof: Due to (1.1.9) and (1.1.11), the operator L defined by (1.3.7) and (1.3.8)
is a continuous extension of the operator (1.3.5). The uniqueness follows from the
density of the space W2™*™ (R, ) in W)™ (R, ) (see Lemma 1.3.1). m

Using the equality (1.1.5), we can extend the boundary condition (1.1.3) to
pairs (u, ¢) € WE?™(R, ) with [ < 2m. This extension is given by
Qo+ Cu=g.
Thus, the following theorem holds.

THEOREM 1.3.1. If pux < 2m for k =1,... ,m+ J, then the operator (1.3.4)
can be uniquely extended to a continuous operator from the space Wzl’zm(R+) x C’
with arbitrary integer | < 2m into W2™ Y (R,)* x C™*/ This extension has the
form

(1.3.9) (u, ¢,u) — (L(u,¢),Q¢ + Cu),
where the functional f = L(u, ¢) is defined by (1.8.7) for | <0 and by (1.3.8) for
0<l<2m.

By Theorem 1.3.1, the operator of the boundary value problem (1.1.2), (1.1.3)
realizes a continuous mapping

(1.3.10) A WE™R,) x € — WEP™O(Ry) x €™
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for arbitrary integer I.

REMARK 1.3.1. For (u,¢,u) € Wo*™(Ry) x C7, I < 0, the element (f,g) =
A(u, ,u) is defined by the equality

(1.3.11)
(Fiv)ry + (9,0) omis = (u, LT 0)r, + (8, (P0)(0) + Q1) com + (4, C™0) s

where v, v are arbitrary elements of W2™ (R, ) and C™"”, respectively. This
means the operator A : (u, $,u) — (f, _) is adjoint to the operator

(1.3.12) AT WEPHRY) x C™H = W (RL) x €™ x ¢
of the formally adjoint problem (1.1.15), (1.1.16) for [ < 0.

REMARK 1.3.2. The assertions of Lemma 1.3.2 and Theorem 1.3.1 can be ex-
tended toreal I, | # 1 2 2, . 2m— % To this end, we define the space Wé’k(]&_) for
arbitrary real [ > 0 as the closure of the set (1.3.3) with respect to the norm (1.3.1)
and for real ! < 0 as the closure of the set (1.3.3) with respect to the norm (1.3.2).

Obviously, the mapping (u, ) — Q¢ is continuous from Wl Qm(R +) into C™*+7 for
arbitrary real [ and coincides with the mapping (u, ¢) — (Bu)(O) for [ > 2m.

Since the spaces W(R,) and I/f/lz(]RJr) coincide for 0 < I < 1/2, we have
WO (Ry) = WA(R,) for [ > —1/2. Furthermore, every function from Wi(R, ), I <
1/2, can be extended by zero to a function from W;(R) (see, e.g., [242]). From this
it follows that the operators L, Lt continuously map Wi(R,) into Wi >™%(R ) if
[ > 2m — 1/2. Analogously, the operators L, defined by (1.1.8) contlnuously map
WE(R,) into Wi tH0(R, ) if I > j — 3/2. Therefore, the operator (u, (Du)(0)) —
Lu is continuous from W,*™ (R, ) into W~ >™%(R, ) for I > 2m—1/2. This operator
can be uniquely extended to a contlnuous mapping W™ (Ry) 3 (u,¢) — f €
Wi H Ry )* with [ < 2m —1/2, 1 # 1,2, 2m — 2. Here the functional f is
deﬁned by (1.3.7) if I < 1/2 and by the equahty

2m
(f,v)ry = (Lju,v)r, — i(DJu, Pv) R, + Z #s(Psv)(0), wve W2 YR,),
s=j+1
ifj—1/2<l<j+1/2,j=12,...,2m 1.

1.3.3. Bijectivity of the operator of the boundary value problem. For
the proof of the bijectivity of the operator A : Wi?™(R,) x C7 — Wi >™(R, ) x
C™+J, 1 < 2m, we need the following regularity assertions.

LEMMA 1.3.3. Let L be the differential operator (1.1.1) and let | and q be
arbitrary integer numbers. We suppose that L(7) has no real zeros. If u € Wi(R,)
is a weak solution of the differential equation Lu = f in R, where f € W4 _2m(]R+),
then u € Wi (Ry).

Proof: Let f; € Wi #(R) be an extension of f to the whole real t-axis. If
g — 2m > 0, then this extension can be obtained analogously to (1.2.1), and in the

case ¢ — 2m < 0 the distribution f can be extended to the following distribution
fr € Wi (R)

2m—q—1
(ool = (£ 0, —x 3 ZDIOG),  peW;"(®),
j=0
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where Y is an arbitrary infinitely differentiable function on Ry with compact sup-
port equal to one in a neighbourhood of zero.

Since L(7) # 0 for real 7, the function v = F; L, (L(7) ™t Fier f1) |t>0 is a so-
lution of the equation Lu = f and belongs to the space W4 (R,). Hence u — v is a
solution of the homogeneous equation L(D;) (v —v) = 0 on R and can be written
as a linear combination of the functions (1.2.3). (Note that functions of the form
(1.2.3) with Im 7; < 0 do not belong to a Sobolev space.) Consequently, u — v lies
in a Sobolev space of arbitrary order. This proves the lemma. m

Applying the assertion of Lemma 1.3.3 to the operator (1.3.6), we obtain the
following result.

LEMMA 1.3.4. Suppose that the polynomial L(7) has no real zeros. If (u,¢) €
WY ™(R,) is a solution of the equation L(u, ) = f, where f € Wi >™°(Ry), then
(u, @) € W™ (Ry.).

Proof: Tt suffices to prove the assertion for ¢ = [ + 1. For ¢ > [ 4+ 1 the

assertion follows by induction. Let (u,¢) € W4*™ (R, ) be a solution of the equation
L(u,¢) = f. Then by (1.3.7), (1.3.8), and (1.1.9) we have

(f,v)r, = (u, LT 0)g,

for every function v € C§°(Ry). This means, u is a weak solution of the equation
Lu = f in Ry. Therefore, from Lemma 1.3.3 it follows that u € Wit (Ry). If
1 < 0 or I > 2m, this automatically implies (u, ) € Wzl"'l’zm(RJr). Now let [ be a
nonnegative integer less than 2m. Due to the definition of the space WQI’Q"‘(RJF), we
have ¢; = (D] 'u)(0) for j = 1,... ,l and it remains to prove that ¢;+1 = (D!u)(0).
By (1.1.10), we get

o0 2m

(1.3.13) (f,v)r, — / (LZH(Dt)u-w—wiﬂu.ml([)t)v) dt— Y ¢;(P)(0)
0 j=l+2

= (fr41 — (Dﬁu)(O)) - (Pa)(0)

for each v € W™ (R, ). Under the assumption of the lemma, the left-hand side of
(1.3.13) defines a linear and continuous functional on W™ ~!(R,.), since the order
of P,y is equal to 2m — 1 —1 and the orders of the operators P2, ... Py, are less
than 2m — [ — 1. Hence the right-hand side of (1.3.13) is also a linear and continuous
functional on W2™'"}(R,.). However, this is only possible if ¢;4+1 = (Dlu)(0). The
proof is complete. m

Now it is easy to prove the following theorem.

THEOREM 1.3.2. Let ux <2m fork=1,... ,m+J.

1) If the boundary value problem (1.1.2), (1.1.8) is regular, then the operator
(1.8.10) is an isomorphism for arbitrary integer . Furthermore, for every triple
(u, p,u) € WP (R,) x C7 the following estimate is valid with a constant c inde-
pendent of (u, ¢, u):

(1.3.14) 1w, D lireem g,y T luler < cllAlw, ¢ wllyi-2mom, yxomts
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If ¢ is the best constant in (1.8.14), then 1/c is a Lipschitz-continuous function
relative to the coefficients of the operator L, B, and C.

2) Suppose estimate (1.8.14) is satisfied for all (u,¢) € Wzl’Qm(R.,_), ue C/,
where | is a given integer number. Then the polynomial L(7) has no real zeros and
condition (%) in Definion 1.2.1 is satisfied. If, moreover, the operator (1.8.10) is
surjective, then the boundary value problem (1.1.2), (1.1.3) is regular.

Proof: 1) For I < 0 the operator (1.3.10) is adjoint to the operator (1.3.12) of the
formally adjoint problem (1.1.15), (1.1.16). By Theorem 1.2.1 and Theorem 1.2.2,
the operator (1.3.12) is an isomorphism if the problem (1.1.2), (1.1.3) is regular.
Hence the equation A(u, ¢,u) = (f, g) is uniquely solvable in W™R,) x C7 for
every given f € W2™ YR, )*, g € C™*7 if | <0. From this and from Lemma 1.3.4

Tr12m

it follows that this equation is uniquely solvable in W,“™(R;) x C” for 0 < [ < 2m.
Since the space Wzl’k(R+) is complete, we get the estimate (1.3.14). The assertion
on the constant ¢ in (1.3.14) can be obtained analogously to Lemma 1.2.2.

2) Suppose that (1.3.14) is satisfied for all (u,¢) € Wzl’zm(R+) and u € C’.
Then there exists a constant ¢ independent of u such that

(1.3.15) lullwiom,y < clllullygi-zmog,

for all u € C§°(R4.). In the proof of Theorem 1.2.1 it was shown for the case [ > 2m
that the last inequality implies the nonexistence of real zeros of the polynomial
L(7). We show that this is also true in the case I < 2m. Let 7o be a real zero of the
polynomial L(7). As in the proof of Theorem 1.2.1, we set

u(t) = u(t) et ¢ (1),

where (. (t) = ((et), ¢ is a function from C§°(R), and € is a positive real number
less than one. According to (1.2.12), there exist positive constants ci, ¢z, indepen-
dent of &, such that

(1.3.16) e /2 < |IUEI|WZL’O(R+) <cpe /2

for I > 0. Using these inequalities, we get in the case [ < 0

](UE,U)R |
”Us”leO R = ||u5||W_z R.)x = sup 2
2 () 2 (B4 vEW, H(Ry), v#£0 ”U||W2—1(R+)

2
||u5”L2(R+) > ce1/2
- k)
||UE||W2—‘(R+)
where c is a positive constant independent of . Furthermore, for [ < 0 we have

~1/2

ellprom,y < luellzo@y) = Iellayy = Il Loy -

Hence (1.3.16) is valid for arbitrary integer .

By (1.2.13), the function Lu, is a sum of functions of the form c; &7 ¢\9)(t) ei™?,
j=1,...,2m. Therefore, it follows from (1.3.16) that the norm of Lu. in the space
WL ™R, ) is bounded by a constant independent of . This contradicts (1.3.15)
and (1.3.16). Consequently, the polynomial L(7) has no real zeros.

Moreover, from (1.3.14) we conclude that the kernel of the operator (1.3.10)
is trivial and, therefore, the homogeneous boundary value problem (1.1.2), (1.1.3)
has only the trivial solution in M* x C7. Thus, condition (ii) of Definition 1.2.1 is
satisfied.
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Suppose that the operator (1.3.10) is surjective and estimate (1.3.14) is valid.
Then the operator (1.3.10) is an isomorphism for the given integer [ = Iy, and
from Lemma 1.3.4 it follows that the operator (1.3.10) is an isomorphism for every
I > lp. In particular, for [ > 2m this means that the boundary value problem
(1.1.2), (1.1.3) is uniquely solvable in Wi(R,) x C’ for every f € Wi *™(R,),
g € C™*Y. According to Theorem 1.2.1, this implies the regularity of the problem

(1.1.2), (1.1.3). The proof of the theorem is complete. m

REMARK 1.3.3. The assertions of Theorems 1.3.1, 1.3.2 are true if p < 2m

for k=1,...,m+ J. If this condition is not satisfied, then A can be continuously
extended to an operator
(1.3.17) A WERRL) x €7 — WLT2ms 2R, ) x €™

where [, k are arbitrary integer numbers, k > 2m, k > max ug. A precise descrip-
tion of this operator is given (for problems in n-dimensional bounded domains)
in Chapter 4. Analogously to Theorem 1.3.2, it can be shown that the operator
(1.3.17) realizes an isomorphism if and only if problem (1.1.2), (1.1.3) is regular.

1.4. Properties of the operator adjoint to the operator of the boundary
value problem

In this section we study the operator A* which is adjoint to the operator A in
the functional analytic sense. As before, we restrict ourselves to boundary value
problems with differential operators of order less than 2m in the boundary con-
ditions. We show that there are close relations between the operator .A* and the
operator AT of the formally adjoint boundary value problem (1.1.15), (1.1.16) (see
Theorem 1.4.1).

1.4.1. Relations between the adjoint and the formally adjoint oper-
ator. Applying Theorem 1.3.1 to the formally adjoint problem, we can extend the
operator (1.3.12) with | <0 to a continuous operator

(1.4.1) AT WERRM R ) X € - WE(R,)* x €™ x €7
with [ > 0. This extension is given by
(v, ¥,v) = (Lt (v, ¥), TY + Q*v, C*v),
where T is the matrix (1.1.14)." In the case [ > 2m the functional L*(v,9) = f €
WE(Ry)* is defined as
(142 (e, = 0. Lws, — (@ T OWO)gn, v WiR,)

(cf. Lemma 1.3.2).
Now we consider the adjoint operator

14.3 A WP RL)* x C™ 3 (v,0) — (Fh) € WA(R,)* x C7,
2

[ > 2m, to the operator (1.2.10) of the boundary value problem (1.1.2), (1.1.3).
The mapping (1.4.3) is defined by the equality

(144) (u’ F)]R+ + (27 }_I')CJ = (Lu, U)R+ + ((Bu|t=0 + CE)?Q)Cm+J )

where u is an arbitrary function from Wi(R, ) and u € C” is and arbitrary vector.
The following theorem describes a connection between the operators A* and A*.
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THEOREM 1.4.1. Let py < 2m fork =1,... ,m+J, f € WARL)*, | > 2m,
g € C>™, and h € C’. Furthermore, let the functional F € W(R,)* be defined by
the equality

(1.4.5) (u, F)r, = (u, ), + (Du)(0),9) cam» u € Wi(RS).
Then (v,9,v) € W2Zm=hb2m (R ) x €™ s a solution of the equation

A* (v,%,0) = (f g, 1)
if and only if (v,v) is a solution of the equation
A" (v,0) = (F, h)
and Yy =T (g — Q*v).
Proof: 1) Let (v,%,v) € W2Zm=h2m (R, ) x C™+7 be a solution of the equation
AT (v,9,0) = (f,9,h), ie,
(1.4.6) (u, e, = (Lu,v)r, — (Du)(0), T%) o,  u € W3(Ry),
(1.4.7) TYy+Qu=g, Cu=h
Then it follows from (1.4.5) and (1.4.6) that
(1.4.8) (u, F)r, = (Lu,v)r, + (Du)(0), g — T9) o for u € Wi(Ry).

This together with (1.4.7) and with the equality B = @ - D implies (1.4.4). Hence
(v,2) is a solution of the equation A* (v,v) = (F,h).

2) Analogously, if (v,v) € W™ (Ry)* x C™*t/ is a solution of the equation
A*(v,v) = (F,h) and ¢ = T7'(g — Q*v), we obtain (1.4.7) and (1.4.8). Using the
representation (1.4.5) for the functional F, we arrive at (1.4.6). Thus, (v, p,v) is a
solution of the equation A* (v,%,v) = (f,g,h). The proof is complete. m

1.4.2. Bijectivity of the adjoint operator. If the boundary value problem
(1.1.2), (1.1.3) is regular, then the operator (1.4.3) is an isomorphism for arbitrary
integer | > 2m. Now we consider the restriction of the adjoint operator .A* to
Sobolev spaces of nonnegative order.

Motivated by Theorem 1.4.1, we introduce the space D5(R, ) as follows. Let
1, k be arbitrary integers, k > 0, l > —k. Then we define the space Dlz’k(R+) as the
set of all functionals F' € W (R, )* which have the form

(1.4.9) (u, F)g, = (u, e, + (PP u)(0),9)c» u € WH(Ry),

where f € WEO(Ry) (Le. f e Wi(Ry) for 1 >0, f € Wy ' (Ry)* for I < 0), g € Ck,
and D) denotes the vector

(1.4.10) D® = (1,D,,...,DF Y ifk=1,2,..., DO =0.

The norm of the functional F in D5* (R ) is defined in a natural way as the infimum
of the sum

llfllel’O(R+) + lglm )
where f and g satisfy (1.4.9).
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REMARK 1.4.1. If | is a negative integer, then the functional
—1
u— Y (D{"'u)(0) 75
j=1

belongs to W !(R4)* and the space D5*(R,) can be even defined as the set of all
functionals F' € WF(R,)* which have the form

k
(U, F)R+ = (U, f)]R+ + Z (Di_lu)(O)E7
j=—1+1

where f € W, {(R,)*, g; € C.

In the case | < —k, k > 0 we set DY*(Ry) = W;{(R,)*. In particular, with
this notation, we have
WiRy) if1>0,

DY R = W3R ={ i) i1 2o

It can be easily verified that the space Dlzl’k(R_,_) is continuously imbedded and
dense in DYF(R,) if I > 1.

THEOREM 1.4.2. Suppose that i < 2m fork =1,... ,m+J and the boundary
value problem (1.1.2), (1.1.3) is regular. Then the adjoint operator A* of A realizes
an isomorphism from DL°(Ry) x C™+7 onto DL >™*™(R,) x C’ for arbitrary
integer [.

Proof: If I < 0, then DYO(R,) = W {(RL)*, DL 2™*™(R,) = W2™ IR, )*
and the assertion follows immediately from Theorem 1.2.1.

Now let [ be a positive integer. We show first that the operator A* continuously
maps the space WA(R ) x C™ into D5~*™2™ (R, )x C”. Let (v,v) be an arbitrary
element of W(R.) x C™*7 and let 1 € C>™ be the vector with the components

v = { (DI71v)(0) for j = 1,2,... ,min(l,2m),
0 for min(l,2m) < j < 2m.

Then (v,7) is an element of the space WiP™(R,) x C™+. Moreover, it follows
from Theorem 1.3.1 that (f,g,h) = A*(v,9,v) € Wy >™°(R}) x C*™ x C’ and

(1411)  flgizmog,, + lgllean + Iles < e (Iollwige, ) + lellenss)

with a constant ¢ independent of v and v. Furthermore, by Theorem 1.4.1, we have
A*(v,v) = (F, h), where the functional F' € W2™(R;)* has the form

(1.4.12) (w, F)r, = (u, /e, + (Du)(0), 9)gor »  u € WE™(RS),

ie., F € Dv?™?™(R,). Due to (1.4.11), the norm of F in DL ™?™(R_) can be
estimated by the norms of v and v. This proves the continuity of the operator A*
from Wi(R, ) x C™*+ into D5 2™2™(Ry) x C7.

Now we prove that A* maps Wi(R)xC™* onto D5~ 2™2™(R,)xC for [ > 0.
Let (F,h) be an arbitrary element of the space D5~>™*™(R,) x C’. According to
the definition of the space D5 2™2™(R_), the functional F' has the form (1.4.12),
where f € ng_zm’o(RJr). By Theorem 1.3.2, there exists a solution (v,%,v) €
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WE2™(R,) x C™ of the equation AT (v,1,v) = (f, g, k). Using Theorem 1.4.1,
we conclude that (v,v) is a solution of the equation A*(v,v) = (F,h).

Thus, we have proved that A* is a continuous mapping from W}(R,) x C™+/
onto DL ?™2™(R,) x C” for | > 0. The injectivity of .A* is obvious. m

1.4.3. Regularity of the solution of the adjoint problem. Since the
space D5 2™2™(R) is continuously imbedded into DI~ *™*™(R,) for [ > ¢, The-
orem 1.4.2 yields the following regularity assertion for the solution (v,v) of the
adjoint problem

(1.4.13) A" (v,) = (F\ h)

THEOREM 1.4.3. Let the assumptions of Theorem 1.4.2 be satisfied and let
(v,v) € WER,L)* x C™/ k> 0, be a solution of the adjoint problem (1.4.13),
where F € Dy™>™™(R,). Then (v,v) € DY°(R.) x C7.

Moreover, ifl > 2m and F has the form (1.4.9) with a function f € Wi~ *™(R,)
and g € C*™, then (v,v) is a solution of the formally adjoint problem (1.1.15),
(1.1.16).

Proof: The first assertion follows immediately from Theorem 1.4.2. It remains
to show that (v,v) is a solution of the corresponding formally adjoint problem if
1> 2m. Let (v,v) € Wi(Ry) x C™*/ be a solution of the equation (1.4.13) with
a functional F € D5 *™*™(R,), | > 2m. Then (v, (Dv)(0)) belongs to the space
W2 ?™(R,), and Theorem 1.4.1 yields

AT (v, (Dv)(0),v) = (f,9,h) -
Thus, (v,v) satisfies the equations (1.1.15), (1.1.16). =

REMARK 1.4.2. By Theorem 1.4.2, the adjoint operator A* realizes an isomor-

phism
Dl,O m+J l—2m,2m J
EO(Ry) x €™ — DYPMAM(R ) x €
for arbitrary integer ! if the boundary value problem (1.1.2), (1.1.3) is regular and
ur < 2mfor k=1,... ,m+ J. It can be shown in the same way that 4* realizes
an isomorphism
D" ™ (Ry) x €™ — DITPE(R,) x €

if problem (1.1.2), (1.1.3) is regular and x > max(2m,pu; +1,... , imsg + 1). Fur-
thermore, a regularity assertion analogous to that given in Theorem 1.4.3 holds.



CHAPTER 2

Elliptic boundary value problems in the half-space

This chapter deals with elliptic partial differential equations in the Euclidean space
R™ and elliptic boundary value problems in the half-space R’}. We investigate the
solvability in Sobolev spaces of periodic functions and derive a priori estimates
for the solutions. Since every smooth domain is diffeomorphic to a half-space in
a neighbourhood of any boundary point, this is the decisive step in the proof of
the Fredholm property of operators of elliptic boundary value problems in smooth
bounded domains. As in Chapter 1, we consider solutions in Sobolev spaces of both
positive and negative integer orders.

2.1. Periodic solutions of partial differential equations

In this section necessary and sufficient conditions for the unique solvability of
partial differential equations with constant coefficients in Sobolev spaces of periodic
functions are obtained. Furthermore, we prove regularity assertions and a priori
estimates for solutions of differential equations with variable coefficients and show
that the ellipticity is necessary for the validity of this a priori estimate.

2.1.1. Sobolev spaces of periodic functions. We consider the set of all
smooth functions on R™ which are 2z-periodic, i.e., the equality

u(r) =u(z + 27 - k)

is satisfied for every z € R™ and k € Z™, where Z denotes the set of the integer
numbers. Every such function is uniquely determined by its values in the cube

Q"={z=(x1,...,@n) €ER" : |zj|<mfor j=1,...,n}.
and can be written as a Fourier series
u(z) = (2m) 7" Y k) ek
kezn

with the Fourier coefficients

u(k) = (27r)_"/2/e_“” u(z) dz.
Qn
Here k - « denotes the sum k121 + - - - + knzn. We define the space W} ,.,.(R™) for

arbitrary real [ as the closure of the set of all smooth 27-periodic functions with
respect to the norm

(2.1.1) 1wy

2,per

a = (3 0+ ) k)

keZm

31
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In particular, Lo per (R™) = W2, ... (R™) is the Hilbert space with the scalar product

() = [ ule) v de = 3 i) 7).
Qn keZr

If [ is a nonnegative integer, then Wr_ﬁ,per (R™) is the set of all 2m-periodic functions
which have quadratically integrable generalized derivatives up to order ! on every
compact subset of R™.

2.1.2. Solvability of elliptic differential equations with constant co-
efficients. For an arbitrary multi-index o = (a1,... ,ap) let o] = a1 + -+ ap
denote the length of this multi-index. Furthermore, we set Dy = Dg1---Dgn,
where Dy, = —i0/0x; .

If
(2.1.2) L(D;)= Y aaD¢

|| <2mm
is a differential operator of order 2m, then we denote by
(2.1.3) L°(D)= > aaDg

|aj=2m
the principal part of L. The operator L is said to be elliptic, if
(2.1.4) L€ = > aab*#0

|a|=2m
for each ¢ € R™, £ # 0. From the ellipticity it follows that |L°(£)| > c|£]?™ for all
& € R™, where c is a positive constant independent of &.
THEOREM 2.1.1. The operator (2.1.2) is an isomorphism from Wi .. (R™)

onto the space Wé;i:‘ (R™) if and only if the following conditions are satisfied:

(i) L s elliptic.
(ii) L(k) # O for each k € Z™.
Proof: 1) We assume that L is elliptic and satisfies condition (ii). From the
ellipticity it follows that .
IO = elef™ > e ((1+[¢[*)/2)™  for ¢ > 1.
Since |L(§) — L°(&)| < ¢ (1 + |€]*™71), it holds

L) = e (1 + [¢)™
with a constant ¢ independent of £ if |¢] is sufficiently large. If, additionally, condi-
tion (ii) is satisfied, we get
(2.1.5) |L(k)| > c (14 [k[*)™
for each k € Z", where the constant c is independent of k. Let f be an arbitrary
function from W._?™(R"™) with the Fourier coefficients f(k). Then the function

2,per
u(@) = (2m) ™" Y L(k) " f(k) e,
kezn
is the uniquely determined solution of the equation L(D.)wu = f. By (2.1.5), this
solution satisfies the estimate

(2.1.6) |y

2,per
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with a constant ¢ independent of f.

2) If the operator L is an isomorphism from W4 ., (R") onto Wé;ﬁ;" (R™), then

(2.1.6) is satisfied for each u € W} ,..(R™), f = Lu. Setting u = ¢**"*, we get the
inequality

(L+ kY2 = Jlullw,

2,per

) < ellLulygi-am gy = el L(R)] (L4 [[2)¢-2m12
which yields (2.1.5) with a constant ¢ independent of k € Z™. Consequently, condi-
tion (ii) is satisfied. Furthermore, (2.1.5) yields
|L° (k/KI)| = [k| 2™ L° ()| 2 ¢/2

if |k| > p and p is sufficiently large. Since the set {§ = k/|k| : k € Z™, k # 0} is
dense on the unit sphere and L°(€) is continuous, we obtain the inequality

|L°(€)] = ¢/2
for each £ € R™, |¢| = 1. This implies the ellipticity of L. m

REMARK 2.1.1. Let L°(D;) be the operator (2.1.3). We assume that this
operator is elliptic. Then condition (ii) of Theorem 2.1.1 is satisfied for the operator

LO(.DI + %T) = Z Aq (.Da:1 + %)al ... (Dz" + %)an .
|a|=2m
Here and elsewhere 1 denotes the vector (1,1,...,1).

2.1.3. Regularity of periodic solutions of elliptic differential equa-
tions. Now let

L(z,D;) = Z aq(z) D
lal<2m

be a differential operator with 27-periodic coefficients a, € C*°(R"). We assume
additionally that the following conditions are fulfilled:
a) The polynomial L°(0,€) = }°,, 2. 2a(0) §* satisfies condition (2.1.4).
b) The coefficients a, of L satisfy the estimate
laa(z) —aa(0)| <e for |a| =2m,
where ¢ is a sufficiently small positive number.

Our aim is to obtain a regularity assertion for the solution of the equation
(2.1.7) L(z,D,)u=f.

For this we need the following lemma which follows immediately from the definition
of the space Wj ,.,.(R™).

LEmMMA 2.1.1. The operator
(2.1.8) (Spu)(@) = (2m)™% Y ak)e*T, uwe Wi, (RY),
k€Z™, |k|>p

where p s a positive real parameter, continuously maps WZl,per (R™) into Wéyper(R”).
Furthermore, the inequality
”Spu”vvzl;;(uan) <1+ 0572 ullwy (R™)

2,per
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is satisfied for every u € W ... (R™). The operator I — S,, where I is the identity

in W3 per (R™), realizes a continuous mapping from W} . (R™) into WAL R™) for

arbitrary integer .

THEOREM 2.1.2. If conditions a) and b) are satisfied and u € W} .. (R™) is a
solution of the equation (2.1.7) with f € Wéij(R"), then u belongs to the space

er
Wzl;;i,.(R”) and the estimate

(2.1.9) leallwis ey < € (1Ellyzzmes oy + lullwg, ) )
is valid. Here the constant c is independent of u.

Proof: Let L°(0,D;) be the principal part of the operator L with coefficients
frozen at the origin. We denote by L()(z, D) the operator

LM (z,D,) = L(z, Dy) — L°(0, Dy + 3 1)
and rewrite (2.1.7) as
(2.1.10) (L°(0, Dy +11) + LW (2, D,) sp) w=f—LO(@,Dy) (I - S, u.

By Theorem 2.1.1, Remark 2.1.1, the operator L°(0, D, + % 1) is invertible. Fur-
thermore, by condition b) and Lemma 2.1.1, we have

1L, D2) Sy gz, < € (e1Soullug,, oy + IS5l o)
< cle+ (143712 ||U||W2‘,per(1R")

for each u € W ., (R™), where the constant c is independent of u, p and . Conse-
quently, the operator on the left side of (2.1.10) is an isomorphism W} ., (R™) —
Wzl;g;" (R™) for every given integer ! if € is sufficiently small and p is sufficiently
large. Using the fact that the operator L(Y)(z,D,) (I — S,) on the right side of
(2.1.10) is continuous from W4 ., (R™) into Wé;ﬁTH(R") for arbitrary p, we get
the assertion of the theorem. m

Next we show that (2.1.9) implies the ellipticity of L(0, D).

LEMMA 2.1.2. Let L be a differential operator of order 2m with smooth 2m-
periodic coefficients and let U be an arbitrary neighbourhood of the point x = 0.
If the inequality (2.1.9) with a constant ¢ independent of u is satisfied for all u €
WiTL (R™), suppu N Q™ C U, then L(0, D) is elliptic.

2,per

Proof: In a sufficiently small neighbourhood of the points 27k, k € Z™, the
coeflicients a, of L satisfy the inequality |aq(z) — aa(0)| < e. Therefore, for every
function u equal to zero outside a sufficiently small neighbourhood of the points
27k, the inequality

I(L(@, Da) = L°(0, Da))ullyis-smqgny < € (< Nullyitr ooy + lullwy,, )

is valid. From this and (2.1.9) we conclude that

@11 fullyges gy < ¢ (12200, De)ullyi-mr gy + lullwg, o))
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for all u € WZH;T (R™) equal to zero outside a sufficiently small neighbourhood of
the points 27k. Since the operator L°(0, D) is translation invariant, the inequality
(2.1.11) is satisfied for all u € WL (R™).

Inserting u = e**' into (2.1.11), we get
(L B2/ < e (1 + K202 120, k) 4 (1 -+ [K[2)172)).
Consequently, for sufficiently large p, |k| > p we obtain
|L°(0, k)] > co (1 + [K[*)™ = co [k[*™
and ‘
|L°(0, k/|K|)| = co-
Since the set {k/|k| : k € Z", |k| > p} is dense on the unit sphere in R", this

implies |L°(0, )| > ¢o for all £ € R™, [¢] = 1, i.e., the operator L(0, D,) is elliptic.
"

2.2. Solvability of elliptic boundary value problems in the half-space

This and the following sections are concerned with boundary value problems in
the half-space z,, > 0. The goal of this section is to obtain necessary and sufficient
conditions for the bijectivity of the operator of the boundary value problem. Here
we restrict ourselves to differential operators with constant coefficients.

As in the foregoing section, we use Sobolev spaces of periodic functions. How-
ever, in contrast to Section 2.1, now the functions are periodic only with respect to
the variables z1,... ,ZTn_1.

2.2.1. Sobolev spaces of periodic functions. Let R" be the half-space
{z = (z1,...,2,) € R™ : z, > 0}. For the sake of brevity, we will use the letter ¢
for the last variable z,, and the letter y for the tuple (z1,... ,2n,—1). We consider
the set of all smooth functions on M which are 27-periodic with respect to the
variable y, i.e.,

w(y,t) = u(y + 27 - ¢,t)
is satisfied for every y € R*~1, t > 0, and every tuple ¢ = (q1,--. ,qn_1) € Z" L.
By Wipe, (R%) we denote the closure of the set of these functions with respect to
the norm

! ) 1/2
— 2
@21l an = / S IDHC Ol ey 1)
J:
In particular, Ly per (R ) = Wy peT(R") is a Hilbert space with the scalar product
(222) wolgriaw, = [ [ uwt)ilutdyar
Ry Qn-?

Here Q™! denotes the cube [—m, 7] 1.

Using the representation (2.1.1) for the norm in W} p]er (R™1), we get

lulhwg,,..any = ( / S Y (P e ord)

Jj=0qez"-1
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where
i) = @0 [ e a
n—1

are the Fourier coefficients of u(-,t). It is more convenient to use the function

def . -
(2.2.3) U(g,t) = (g, (9) ')
instead of @, where (g) = (1 + |g|?)*/2. Then we have
B 1/2
(22.4) ey e = (30 (0" 10 Ca MWosay) -
qeZ™~

Analogously, we define the space W} ..(R™~! x R) as the closure of the set of all
smooth 27-periodic (relative to y) functions on R™ with respect to the norm

1/2
@25)  lulwy @ = (2 @F V@) -

qun—l

Using the Fourier transformation (1.2.2), we obtain the following equivalent norm
o0 (2.2.5):

(2:2.6) fl = (> @ / (1+r2)l|(ftaTU)(q,T)|2dT)” i
gqezZn—1 R

Obviously, the restriction of any function u € W2l,per (R"~! x R) to the half-space
R? belongs to Wj .., (R7:). Furthermore, every function u € W3 per (R7) can be
extended to a function v € W} _..(R™™! x R) as follows:

v(y,t) = Y, (exU)(g, (a)t) e
q€Zn—1
where e, is an arbitrary continuous extension operator W§(R;.) — W4(R).

Finally, the space Vc[)/l2,per (R%) is defined as the closure with respect to the norm
(2.2.1) of the set of all smooth functions on R’ which are 27-periodic in y and equal
to zero in a neighbourhood of the plane ¢t = 0.

2.2.2. The trace operator. Let vy, be the operator

Y u(y,t) = (u(y,0), (Dew)(y,0), ..., (Di™u)(y,0))
defined on the set of all smooth and 27-periodic (with respect to y) functions on
R The operator 71 is called the trace operator and the function (v1u)(y) = u(y,0)
is called the trace of u on the boundary plane z,, = 0.

LEMMA 2.2.1. 1) The operator =y, can be continuously extended to a bounded
mapping

Wi por (R) — H W, LR

2,per

ifl > p.
2) For arbitrary integer | > i there exists a linear and continuous right inverse

Hw’ TR WY e, (RT)

2,per
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to the operator v,.

Proof: 1) Let u be an arbitrary 2m-periodic (with respect to y) smooth function
on R%} and let U be defined by (2.2.3). Then the equality

u(y,t) = Y Ulg,(g)t)e?
yields
(D7) (,0) = > (~ig))’ (D] U)(g,0) V.
gezr—1

Since the space Wi(R..) is continuously imbedded into C'*~*(R..), we have
[(DI7'U) (g, 0)| < el|U(g: ) lwiry

for j =1,...,l. Consequently, we obtain
”(Df:j—lu)(‘,0)“‘2,‘,:5—;+1/2(Rn_1) sc Z (@*U(q, ')“%vg(m) = c”“”%v; per(RT)
per q€Zn—1 !

for j <. This proves the first assertion.

2) Let g; be arbitrary functions from Wé;ﬁjl/ 2(]R"‘l), j=1,...,u, and let

9j(q) denote the Fourier coefficients of g;. Furthermore, let x be a smooth cut-off
function on Ry equal to one in the interval 0 < ¢ < 1/2 and to zero in the interval
1 <t < 0o0. Then it can be easily shown that the function

b el
W= 5 A0 X0 o
gezn—1 j=1 .

satisfies the equations (D! "u)(y,0) = g;(y) for j = 1,... , u and the inequality

7
||U||W21_pe,(nx1) <c 2:1 ng||w2!;a;1/2(Rn_1) .
1=

This proves the second part of the lemma. m
2.2.3. Ellipticity of boundary value problems in the half-space. Let
again
L(D;) = L(Dy,D;)= Y ag;DyD]
|Bl+i<2m

be an elliptic differential operator of order 2m with constant coefficients. We con-
sider the boundary value problem

(2.2.7) L(Dy, D) u(y,t) = f(y,t), (y,t) € RY,
(2:2.8) B(D,, D) ulyt)| _ +C(D,)uly) = gv), vy R,
where B(D,, D;) is a vector of linear differential operators

Bi(Dy, D)= Y brp; DEDI, k=1,...,m+J,
|8l +i<pr

with constant coefficients, ord By < pg, and

C(D,) = (Crs(D)

1<k<m+J, 1<j<J
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is a matrix of linear differential operators

Ck,j(Dy) = Z Ck,5;8 D5
1Bl1<Spr+T;

with constant coefficients. Here ju; and 7; are given integer numbers. If p < 0
or pp + 7; < 0, then the corresponding operators By and Cy ; are assumed to be
identically equal to zero. We suppose that 7; +maxu, > 0 for j =1,...,J. Other-
wise, the component u; of the vector-function » does not appear in the boundary
condition (2.2.8).

Under our assumptions on L, B, and C, the operator (u,u) — (f,g) of the
boundary value problem (2.2.7), (2.2.8) realizes a linear and continuous mapping

l+ -1/2 rmyn— l n l—p— 1/2 on—

(229) A Wi, (RY) x Wyt 2R — Wi 2 (RY) x Wo ey (R™Y)
for arbitrary integer [ > 2m, I > max uy. Here

witi- 1/2(]R” 1y def H l+r]—1/2 Rn—l) and

2,per 2,per

m—I—J

i 1/2 1 1/2
W2 pgr (Rn 1 H WZ pZ: / Rn 1)

We denote by
BY(Dy,Dy) = Y byp,; DID]

1Bl+i=pk

and
CisDy) = . cxse D)

|Bl=pr+T;
(k=1,...,m+J; j=1,...,J) the "principal parts” of By and C}, ;, respectively.
The operators B} and C'k depend on the choice of the numbers p; and 7;. In
particular, we have By ;= 0 if ord By, < pg or px < 0, and analogously, Ck,a =0if
ord Cy ; < pp + 75 or pg +7; <O0.

In contrast to the problem in R"”, the ellipticity of L does not suffice for the
bijectivity of the operator (2.2.9).

DEFINITION 2.2.1. The operator L is said to be properly elliptic if for every
n € R*~1 n # 0, exactly m zeros (counting multiplicity) of the polynomial

T— L°(n, 1) = Z ag;n° T
[Bl+5=2m

lie both in the upper half-plane Im 7 > 0 and in the lower half-plane Im 7 < 0.

It is evident that every properly elliptic operator is elliptic. The operator
L = D2 —2iD;, Dy, — D2 is an example for an elliptic operator in the case n = 2
which is not properly elliptic.

Definition 2.2.1 has the disadvantage that it depends on the choice of the Carte-
sian coordinate system. For this reason, we give another equivalent definition.

LEMMA 2.2.2. The following assertions are equivalent:

1) The operator L is properly elliptic.
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2) For every pair &, ¢ of linearly independent vectors in R™ ezactly m zeros
(counting multiplicity) of the polynomial

(2.2.10) T — L€+ 7()
lie both in the upper half-plane Im 7 > 0 and in the lower half-plane Im 7 < 0.

Proof: Obviously assertion 2) implies 1). We assume now that L is properly
elliptic. The polynomial (2.2.10) can be written in the form

L€+ 7¢) = L) + LW, O)r*™ 4 -+ LO™ (g, () 7+ L°(€),

where L) (¢, ¢) are polynomials of £ and ¢ (j = 1,... ,2m—1). By the proper ellip-
ticity, exactly m zeros of the polynomial (2.2.10) with the vectors ¢ = (0,...,0,1)
and & = (&1,...,&n—1,0) lie in the upper half-plane. Furthermore, the zeros of the
polynomial (2.2.10) continuously depend on the vectors £ and ¢, ¢ # 0. Since the
polynomial (2.2.10) has no real zeros for arbitrary linearly independent vectors &
and ¢, it follows that exactly m zeros of this polynomial lie in the upper half-plane
if £ and ( are linearly independent. The lemma is proved. m

As in Chapter 1, we denote by M™(n) the set of the stable solutions of the
equation
(2.2.11) L°(n, Dy) u(t) = E ag;n° Dlu(t)=0 fort>0,
|8l+7=2m

where € R*! is an arbitrary parameter.

LEMMA 2.2.3. 1) In the case n > 3 every elliptic operator is properly elliptic.
2) If n = 2, L is elliptic and the system of the homogeneous boundary conditions

J
(2.2.12) B2 (n, Dt)u(t)lt DGRy =0 fork=1,...,m+J
has only the trivial solution (u,u) = (u,u1,... ,uy) = 0 in M+ (n) x C’ for each

n € R"1\{0}, then L is properly elliptic.

Proof: Let n be a point in R"~'\{0} and let 71 (n),...,7.(n) be the differ-
ent zeros of the polynomial 7 — L°(n,7) with the multiplicities r1(n),... ,7.(n),
r1(n) 4+ - - +7ru(n) = 2m. Since L°(n, 7) has no real zeros, the set of all solutions of
the equation (2.2.11) is the direct sum

M(n) = M*(n) & M~ (n)
where M¥ () are the linear spaces spanned by the functions
tl/ ei‘l’j('l’[)t

with £Im7;(n) > 0, v = 0,...,7r;(n) — 1. The dimensions of M*(n) and M~ (n)
depend continuously on 1 # 0.

Furthermore, the relation L°(n,7) = L°(—n, —7) yields M~ (n) = M*(-n)
and, consequently,

(2.2.13) dim M*(n) + dim M*(—n) = dim M(n) = 2m.
If n > 3, then there exists a continuous curve in R"~!\{0} connecting n with —7.

Hence by the continuity of dim M™(n) with respect to 7, we have dim M™*(n) =
dim M*(—n). Thus, (2.2.13) implies dim M*(n) = m.
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If n = 2 and the system of the equations (2.2.12) has only the trivial solution in
M+ (n) x C’ for n € R"~1\{0}, then we have dim M™*(n) < m for each n € R*},
n # 0. Together with (2.2.13) this implies dim M™(n) = m. This means that L is
properly elliptic. m

Now we introduce the notion of ellipticity for the boundary value problem
(2.2.7), (2.2.8).

DEFINITION 2.2.2. The boundary value problem (2.2.7), (2.2.8) is said to be
elliptic if the boundary value problem on the half-axis

(2.2.14) L°(n, Do) ult) = f(t)  fort>0,
(2.2.15) B°(n, De)ult)] _ +C°(Mu=g

is regular in the sense of Definition 1.2.1 for every n € R"~1\{0}. This means that

(i) the operator L is properly elliptic,
(ii) the system of the homogeneous boundary conditions (2.2.12) has only the
trivial solution in M™*(n) x C7 for each n € R*!, n # 0.

REMARK 2.2.1. The conditions of ellipticity for boundary value problems were
introduced first by Z. Ya. Shapiro [231] (in the case of the Dirichlet problem) and
Ya. B. Lopatinskif [127]. For this reason, condition (ii) is often called Lopatinskii
condition or Shapiro-Lopatinskii condition. Furthermore, it is sometimes said that
the boundary conditions (2.2.8) cover the differential operator L or satisfy the
complementary condition.

REMARK 2.2.2. The operators B° and C° in (2.2.15) and, therefore, the va-
lidity of condition (ii) in Definition 2.2.2 depend on the choice of the numbers L
and 7;. As the following example shows, a boundary value problem may be elliptic
for different choices of the numbers p; and 7;.

Example. We consider the boundary value problem
(2.2.16) Au=f  fort>0,
(2.2.17) ult—o +u1 = g1, U1 = g2.

First let py = po = 71 = 0. Then we obtain the following problem on the half-axis
(cf. (2.2.14), (2.2.15)):

(=n* — D})u(t) = f(t)  fort >0,
u(0) +u1 = g1, ur = go.

If we choose 1 = 0, ug = —1, 71 = 1, then the principal parts of the operators
generate the boundary value problem

(=n? = DR)ult) = f(t)  fort >0,
u(0) = g1, uy = ga.
In both cases condition (ii) of Definition 2.2.2 is satisfied. In the first case the
operator (u,u1) — (f,91,92) of the boundary value problem (2.2.16), (2.2.17) is
considered as a mapping
Wi per (RE) X Wy ool (R ) — Wi 2 (RY) X Wy el (R™) x Wy o (R,

2,per 2,per 2,per 2,per
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[ > 2, while in the second case this operator is considered as a mapping

W3 per (R) x Wyt 2R Y) — W22 (RT) x Wy L2 (RP1) x Wyt 2(RY).

2,per 2,per 2,per 2,per

2.2.4. Existence and uniqueness of the solution. We are interested in the
solvability of the problem (2.2.7), (2.2.8) The following theorem gives a necessary
and sufficient condition for the existence and uniqueness of the solution.

THEOREM 2.2.1. Let | be an arbitrary integer, | > 2m, | > max py. The op-
erator (2.2.9) of the boundary value problem (2.2.7), (2.2.8) is an isomorphism if
and only if the following conditions are satisfied:

(i) The boundary value problem (2.2.7), (2.2.8) is elliptic.

(ii) The boundary value problem on the half-azis

(2.2.18) L(g, D) v(t) = 6(t), t>0,
(2.2.19) B(g, Dejo(t)],_ +Cla)r=1

is reqular (in the sense of Definition 1.2.1) for every q € Z™ 1.

Proof: The proof consists of the following three steps. In the first step we will
show that the conditions (i), (ii) are equivalent to the following conditions (iii) and
(iv):

(iii) The boundary value problem
(2.2.20) Lig, @ De) v(t) = $(8), ¢ >0,
(2.2.21) B(g, (@)De)u(t)|,_ +Cla)r=1

has a unique solution (v,v) € Wi(R;) x C’ for every ¢ € Z"1, ¢ €
WinE,), g e Ces
(iv) Every solution (v,v) € Wi(R,) x C7 of (2.2.20), (2.2.21) satisfies the esti-
mate
(2.2.22)
m+J

J
lolZse ) + D@ losl® < e (@7 19121 -am g, + D 0) 72 [vyf?)
j=1

with a constant ¢ independent of q.

Under the assumption that conditions (iii), (iv) are satisfied, we will prove in the sec-
ond step that problem (2.2.7), (2.2.8) is solvable in W5 .. (R7) x WhtT-1/2(Rn-1)

,per 2,per
for any given f and g from the corresponding Sobolev spaces and that every solution

satisfies the estimate
(2.2.23)

ullg oy Iyt gy < € (I sy, 1% 2 ) -

2,per

In the last step it will be proved that the bijectivity of the operator (2.2.9) implies
(iii) and (iv).

Step 1. Applying the transformation ¢t = 7/(g) to problem (2.2.18), (2.2.19),
one gets problem (2.2.20), (2.2.21). Consequently, both problems are simultane-
ously solvable. We assume that additionally condition (i) is satisfied. Then the
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operator of the problem

(2.2.24) L°(—<%,Dt)v(t):¢(t), t>0,
oL Dy o( 9 \y—
(2.2.25) B (g Povd)| _ + (v =19

is an isomorphism
(2.2.26) WHR,) x C/ — Wi ™(R,) x C™

for every ¢ € Z"!, ¢ # 0. Since the set of all points n = q/{(q) with ¢ # 0 is
contained in the set {n € R"™! : 1 < |p| < 1}, the norm of the inverse operator
is less than a constant ¢; independent of ¢, ¢ # 0 (see Lemma 1.2.2). For large |q|
the operator of the problem (2.2.24), (2.2.25) is close the operator of the problem

(@)™ L(g, (@) D) v(t) = 6(t), ¢ >0,

J
(@)™ Bi(g, (@ Do(®)| _ + D (@)™ Cug@vs =i, k=1, ,me+ 1,
PP

in the operator norm (2.2.26). Hence the norm of the inverse to this operator is
bounded by the constant 2¢; if |q| > p and p is sufficiently large. This implies the
estimate (2.2.22) for the solution of (2.2.20), (2.2.21) if |q| > p. For |g| < p this
estimate follows immediately from (iii).

If conversely conditions (iii) and (iv) are satisfied, then by the same arguments,
we obtain the unique solvability of the problem (2.2.24), (2.2.25) for sufficiently
large |g| > p. Since every point 7 on the unit sphere in R"~! is an accumulation
point of the set {q/{q) : ¢ € Z"™!, q # 0}, this implies the unique solvability of
the problem (2.2.14), (2.2.15) for || = 1. Therefore, by the homogeneity of the
operators L°, B° and C°, this problem is uniquely solvable for each n € R,
n # 0, i.e., problem (2.2.7), (2.2.8) is elliptic.

Step 2. Let (u,u) € W} . (R7) x WZH;T 1/2(Rn=1) be a solution of the problem
(2.2.7), (2.2.8). Then the Fourier coefficients (i(q, ), %(g)) lie in Wi(R,) x C’ and
satisfy the equations (2.2.18), (2.2.19) with the Fourier coefficients f(g,-) of f and
g(q) of g on the right-hand side. If we set U(q,t) = u(q, {(g)~1t), then the tuple

(U(g,-),n) satisfies (2.2.20), (2.2.21) with F(q,t) = f(q, (g)~'t) and g(q) on the
right-hand side and condltlon (iv) yields

(2.2.27) U(q, - ” wiry) T Z )27 |5 (q)
m—+J
e ({0 ™™ IF (g, Mys-am e, ) + > (@7 9k(@)?)

Multiplying this inequality by (g)?~! and summing up over all ¢ € Z"~!, one gets

(2.2.23). Consequently, the solution of the problem (2.2.7), (2.2.8) is uniquely de-
termined. Furthermore, the solvability of the problem (2.2.18), (2.2.19) ensures the
existence of a solution of the problem (2.2.7), (2.2.8).
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Step 3. We assume that (2.2.9) is an isomorphism. Then the inequality (2.2.27)

is satisfied for each u € W} .. (R"™), u € Wé;ﬁ; Y2(Rn-1). If we set

u(y,t) = v({@)t) 7Y, u=uyver?
with arbitrary v-€ W}(R4), v € C’ and ¢ € Z"™}, we get (2.2.22), where ¢ and
% are the right-hand sides of (2.2.20), (2.2.21). This proves the uniqueness of the

solution of (2.2.20), (2.2.21). Now let ¢ be an arbitrary function from W} ~?™(R,)
and 9 € C’ an arbitrary vector. Then by our assumption, there exists a solution
(u, w) of the problem (2.2.7), (2.2.8) with the right-hand sides

fy,t) = d((g)t) 7 g=pe'rv.
The Fourier coefficients (g, -) and u(q) of w and u satisfy the equations
L(g, Dy) u(g, t) = ¢({g)t) fort =0,
B(q, D;)u(q, t) o T ClQ)ulq) =
Hence the pair (v,v) with v(¢) = u(q, (g) ~'t), v = i(q) is a solution of the problem
(2.2.20), (2.2.21). The proof of the theorem is complete. m

REMARK 2.2.3. The conditions (i), (ii) in Theorem 2.2.1 are satisfied, e.g., for
the boundary value problem

(2.2.28) L°(Dy+i1,Di+Y)u=f inR7,
(2.2.29) B°(Dy+i1,Di+ L)u LT Dyt 1u=g onR™*
if the boundary value problem (2.2.7), (2.2.8) is elliptic.

Indeed, the principal parts of the differential operators of the boundary value
problems (2.2.7), (2.2.8) and (2.2.28), (2.2.29) coincide. Hence condition (i) in
Theorem 2.2.1 is obviously satisfied for the problem (2.2.28), (2.2.29). Furthermore,
it follows from the ellipticity of the problem (2.2.7), (2.2.8) that the boundary value
problem

L°(g+iI,D)u=¢ inRy,
Bo(g+ 3T, Du|_ +C°(g+ 3 Du=v
is uniquely solvable in W(R,)xC for every ¢ € Z"~1, ¢ € Wi >™(Ry), ¢ € C™+/
(see Theorem 1.2.1). This problem is equivalent to
L°(g+31,D,+ v =e"?¢ inRy,
B°(¢+31,D+ %)UL=0 +C(q+iTu=y
if we set u = e**/?v. Consequently, condition (ii) in Theorem 2.2.1 is satisfied for

the boundary value problem (2.2.28), (2.2.29).

2.3. Solvability of elliptic boundary value problems in the half-space in
Sobolev spaces of arbitrary integer order

In this section the results of Section 2.2 are extended to Sobolev spaces of
arbitrary integer order. We prove the validity of a Green formula and introduce the
formally adjoint boundary value problem. Here we restrict ourselves to the case
when the boundary operators By, are of order less than 2m.
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The extension of the operator of the boundary value problem to Sobolev spaces
of lower order is constructed in the same way as in the one-dimensional case. We
show that conditions (i) and (ii) in Theorem 2.1.2 are also necessary and sufficient
for the unique solvability of the boundary value problem in Sobolev spaces of small
positive and negative order.

Furthermore, this section contains a regularity assertion and a priori estimates
for solutions of elliptic boundary value problems with variable coefficients in the
half-space.

2.3.1. Sobolev spaces of negative order. For I =1,2,... let W} . (R%)*
be the dual space of Wé,per (R%) equipped with the norm

(2.3.1)

lullws .

@y = 50 { 14, 0)gno1xm, |+ 0 € Whper (RE), Wolluwy,, gy =1} -

Here (-, -)gn-1xr, denotes the extension of the scalar product (2.2.2) to the prod-
uct of the spaces Wi ,..(R7)* and Wj .. (R%). If u is an arbitrary element of
W4 per (R7)*, then the Fourier coefficients (g, -) are functionals on W3(R, ) which
are defined by the equality

(232)  (ilg,), #Ory = 2m) "2 (u, €9 @)gr-1xm, , ¢ € Wa(Ry).
LEMMA 2.3.1. The norm (2.3.1) is equal to

(2.3.3) hl = (32 <q>‘2"1llU(‘1")”%vémn*)m’

qun_l
where U 1is given by (2.2.8).

Proof: For arbitrary u € W} .. (R7)*, v € Wi ., (R%) we have

[CROTSENEE iZ (@) 9@ g, | = | @ U@, V),

q
< Z<(1>_1 1U(q, Mlwiepys V(@) weeyy
q

where U(q,t) = u(q, (¢)~'t), V(g,t) = v(q, (g)~'t). Using the Schwartz inequality
and the representation (2.2.4) for the norm of v in WQI,pe’r (IR’_}_) we get

1/
(4, v)gr-1xm, | < (Z(qﬁ"1 1U(q, ~)II€V4(R+)*) lvllwy

2,per
q

®7) -

Consequently, the norm (2.3.1) does not exceed the norm (2.3.3).
On the other hand, for every given U(q,-) € W}(R,)* and every positive num-
ber € < 1 there exists a function V(q,-) € W4(R,) such that

(U(Qa ) ) V(qa '))R+ > (1 - 6) ”U(qa )”Wé(]R.;_)*

V(g Mwe ey

and

(2.3.4) IV (@ Mwis) = @2 U@ Mwyey )
We define the function v € W4 .. (R%) as

)= V(g (g t)er?.
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Then it follows from (2.3.4) that the norm of v in Wj ., (R}) is equal to the right
side of (2.3.3). Hence the inequality

Z(q)‘”'l U, ')”%’Vé(RH* = Z(‘J)_l 1U(a,)llwy Mwiwy)
< (1 - 5)_1 Z<q>_1 (U(q’ ')a V(q, .))]R+ = (1 - E)_l (U, U)Q"—1XR+
< (=) Hullwg,. ( Lo (RT) -

yields
ol 1/2 _
(@ 0@ Mswyy-) < A= ullws,., g -
q

This proves the lemma. m

Analogously to the one-dimensional case, we define the space Wzl ’;er(Ri) for

integer k,l, k > 0, as follows. If [ > 0, then W2 per (R7) is the set of all pairs (u, @),
where u € W4 ., (R%}) and ¢ = (¢1,... ,¢%) is a vector-function with components
¢; € sz,i;"l/ ?(R™~1) satisfying the condition

¢;(y) = (DI ""u)(y,0) for j <.
The norm in Wé:’;ET(Ri) is defined as

k
“(ua Q)”Wzl;';er(Rg‘_) = HU’HWzl per(RT) + Zl ”¢j“wzl;ﬂej_'1/2(Rn~1) .

Since only the components ¢; with j > [ can be chosen independent of u, the space
Wyh..(R%) can be identified with W} ,,.(R?) if [ > k and with

mwwxnw”mww

pET
j=l+1

if 0 <1 < k. In the case [ < 0 we set

3Lk l +1/2 (yn—
WZ,per (Rn) W2 ,per (Rn X H 2 pfzr / (R 1)
7j=1
and
k
”( )“WZL ’;er R7) = ”u”W;,zlmr(Ri)* + Zl |l¢j||W2L,;Q”/2(Rn—1) .
=

In particular, we have W40 (R%) = Wyl (R)* if | < 0 and Wy, (R}) =
W3 per (RT) if 1> 0.

Obviously, the space Wégerk(R") is continuously imbedded into Wi* per (RT).
Furthermore, it can be shown that é‘;l,k (R7) is dense in Wik per (R (cf. Lemma
1.3.1).
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2.3.2. The Green formula in the half-space. Now we consider the bound-
ary value problem

(2.35) L(y,t, Dy, D¢) u(y,t) = f(y,t) inRY,
(2.3.6) B(y,t, Dy, Dy)u(y, t)L=0 +C(y, Dy)uly) =g(y), yeR*™,

where, in contrast to the previous section, the coefficients of the operators L, B
and C may be variable. More precisely,

(2.3.7) L(y,t, Dy, Dy) = Z ag,;j(y,1t) D5 Dg
18l+5<2m

is a differential operator of order 2m with infinitely differentiable coefficients ag ;
which are 2m-periodic with respect to the variable y and have bounded t-derivatives
of arbitrary order. Furthermore, B is a vector of differential operators

(238)  Bi(y,t,Dy,Di)= > bkp;(y,t)DED!, k=1,...,m+J,
[Bl+3<pk
and C is a matrix of differential operators
(239) Cr;(W,Dy)= > crip@®Dy, k=1,...,m+J j=1,..,J
18IS+

with infinitely differentiable 27-periodic (with respect to y) coefficients. It will be
assumed in this section that ord By < 2m for k=1,... ,m+ J.

In order to derive a Green formula for problem (2.3.5), (2.3.6), it is useful to
write the operator L in the form

2m

L(y,t,Dy, De) =Y A;(y,t,Dy) D],
j=0

where

A;(y,t,Dy) = > ag;(yt)Df.
[B]|<2m—j

Analogously, the operators By, have the form

Hi
Bk(ya t, Dya Dt) = ZBk,j(yat’ Dy) Dg

=0
where By ;(y, Dy) are linear differential operators of order < u — j. Since ord By <
2m for k=1,...,m + J, the operator B admits the representation
(2‘3'10) B(yata Dy,Dt) = Q(y:ta Dy) -D,

where, as in Chapter 1, D denotes the column vector with the components D{ _1,
j=1,...,2m, and

Q(y) t Dy) = (Qk,j (y’ t D’y))

is the matrix with the elements

. _ | Bij-1(y,t,Dy) for j<pp+1,
Q¥ Dy) = { 0 for pr+1<j<2m.

1<k<m+J,1<j<2m
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Let L' be the formally adjoint operator to the differential operator (2.3.7), i.e.,
L*(y,t,Dy,D)v= > DSDl(ag;(y,t)v).
|Bl+5<2m

Analogously, the formally adjoint operators to A;, By ; and Cy ; are defined. The
formally adjoint operator to the matrix C(y, D,) is the J x (m + J)-matrix

C*(y, D) = (CF, (%, D))

Using this notation, we obtain the following Green formula which has the same
form as formula (1.1.6).

1<5<J, 1<k<m4J

__ THEOREM 2.3.1. Let u = u(y,t), v =v(y,t) be arbitrary smooth functions on
R% which are 2m-periodic with respect to y and equal to zero for large t. Furthermore,
let u= (u1,...,uy), v = (V1,... ,Umts) be arbitrary smooth 2m-periodic vector-
functions on R"™1. Then the Green formula

(2.3.11) / Lu-vdydt+ / ((Bu)w,0) + Culy), v)) _ dy

cmt7
Qn—1xRy4 Q-1
= [ wIwds [ (00, PoE0+Q W), d
@n—lxR+ @n—l
+ / (u(w), Cu(w)) r dy
Qn——l

is valid. Here Pv = P(y,t, Dy, D;)v denotes the vector with the components

2m—j

(2.312)  Py(y,t,D, D)v=—i Dg(Aj+s(y,t,Dy)v), j=1,...,2m.
s=0

Proof: Analogously to the proof of Theorem 1.1.1, it can be shown by induction
that
(2.3.13) / u-Ltvdydt = / (Lju-7—iDju-Pjv)dydt
Qn—lxR+ Qn—lXR+

-y / (D5~ u)(y,0) - (Pv)(y,0) dy
s=1@n_1

for 5 = 1,...,2m and for all infinitely differentiable functions v, v on M which
are 2m-periodic with respect to the variable y and equal to zero for large ¢t. Here L;
denotes the differential operator

(2.3.14) Lj=) As(y,t,Dy) D;

For j = 2m we get

(2.3.15) / (uw-Ltv— Lu-7)dydt = — / ((Du)(y,0), (Pv)(y,0)) cam dy-
Qr-ixRy Qi
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Furthermore, we have

/ (Cu®),v(¥)) gmss dy = / (u(y), Cru(y))es dy

Qn—l Qn—l

and, by the representation (2.3.10) for B,

/ ((Bu)(y,0),0(Y)) gms Ay = / ((Dw)(y,0), Q" v) conm dy.

Qn—l Qn—l

Hence we get (2.3.11). m

REMARK 2.3.1. The vector P given in Theorem 2.3.1 can be written in the
form P = T(y,t, Dy) D, where

T(y,t,Dy) = (Tj,s(ya t Dy))

1<j,5<2m

is a triangular matrix of differential operators T} s with smooth coeflicients, T; s = 0
ifj4+s>2m+1, Tjomi1—; = —18o2m(y,t) for j = 1,...,2m, and ord T}, <
2m +1—j — s for j + s < 2m. If agam(y,0) # 0 for y € R*7!, then the mapping
w — T'(y,0,Dy)w is an isomorphism

Wi—it+1/2 ) Wi=2mti=1/2
H 2 pir / Rn H 2,pe:‘n =t (Rn 1)
for arbitrary [. The inverse to T is a matrix

T (y,t,D,) = (S5.(6:1, D))

1<5,s<2m

of differential operators S;, with S;s = 0 for 7 +s < 2m + 1, Sjomy1—5; =
i@0,2m(y,t) 7! for j=1, ... 2m, ord S; s <j+s—2m—1for j+s>2m+ 1.

Analogously to the one-dimensional case, we define the formally adjoint bound-
ary value problem to problem (2.3.5), (2.3.6) as follows.

DEFINITION 2.3.1. Let P be the vector with the components (2.3.12). Then
the boundary value problem

(2.3.16) Ltv=f inR%,
(2.3.17) Pvlimo+Qtv=g, Ctu=h onR"’

is said to be formally adjoint to the boundary value problem (2.3.5), (2.3.6).

REMARK 2.3.2. If the operators L, B and C have constant coefficients, then
the coefficients of the operators in the formally adjoint problem (2.3.16), (2.3.17)
are also constant. Furthermore, as a consequence of Theorem 1.2.2, the formally
adjoint problem is elliptic if and only if the original problem (2.3.5), (2.3.6) is
elliptic.
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2.3.3. Extension of the operator of the boundary value problem. We
consider the boundary value problem (2.3.5), (2.3.6). If we identify every function
u € Wi .. (R%}), | > 2m, with the corresponding pair (u, Duli=o) € IZZ:.( n), we
can consider the operator A of this problem as a linear and continuous mapping

from

(2:3.18) Wi per (RY) x Wy bt 2R
into
(2.3.19) Wi (R x Wy (R,
Using the Green formula (2.3.11) and the formula
(2.3.20) / Lu-vdydt = / (Lyw -7 —iDiu- P) dydt
Q"_1XR+ Q"‘1XR+
+ Z (D}~ u)(y,0) - (Pjv)(y,0) dy
_l+l(@'n. 1

which follows from (2.3.13) and (2.3.15), we can construct an extension of the
operator A to the space (2.3.18) with arbitrary integer ! < 2m. Analogously to
Theorem 1.3.1, the following statement holds.

THEOREM 2.3.2. The operator

(2.3.21) Wam2m™(R1) x Wy T2 (RP1) 5 (u, Dulemo, u)

2,per 2,per
(R™™)

can be uniquely extended to a continuous operator from (2.3.18) into (2.8.19) with
I < 2m. This extension has the form

(u, ¢, u) — (L(u, 9), Q¢ + Cu)
where the functional f = L(u,$) € W. wim- Z(R'Jﬁ)* 1s defined

2,per
a) in the case | < 0 by the equality

(2322) (fa U)Q"—1XR+ = (uaL+v)Qn_1xR+ + (Qa Pv|t=0)Qn—1 P
b) in the case 0 < 1 < 2m by the equality
(2.3.23)

— (Lu, Bulymo + Ct) € Lo per(R7) x Wi 2712

2m
(f,v)gr-1xRr, = / (L - —iDiu- Po)dydt+ Y (65, Pjvl=o)gn-1
Qr—1xRy Jj=l+1

where v is an arbitrary function from W Il,jrzm(]R”)

Here (:,-)gn-1xr, denotes the scalar product (2.2.2), while (-, ")qn-1 is the
scalar product in La per (R™™1) and Lg per (R™"71)%™.

Note that the mappings

Q(,0,D,) HWJWWUHM$WWﬁ
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and

_ n— l—p—1/2, 0
C(y,Dy) : Wi 2R — W, o (R

are continuous for arbitrary I. We denote the operator (2.3.21) and its extension to
the space (2.3.18) with | < 2m also by A.

If (u,¢) € Wit (R%), | > 2m, then ¢ = (¢1, ... , d2m) = Dule—o and, conse-
quently,

2m
Z “¢j”W2l;Jeil/2(R"_l) <c “uHWZLYNT(Rz) :
Jj=1

This is not true if [ < 2m. However, the following assertion holds.

LEMMA 2.3.2. Let ¢ be a smooth 2m-periodic function on R"™1 and let n =
n(y,t) be a smooth function on M which is 2m-periodic with respect to the variable
y such that n(y,t) =0 fort > 2, n(y,t) =1 if t <1 and y lies in a neighbourhood
of supp (. Suppose that the coefficient ag om of L does not vanish. Then there exists
a constant ¢ > 0 such that the inequality

2m
2320) 30Kl < © (Imullizo_qusy + 1L D lli=2ms e
J:

is satisfied for every (u, ¢) € WQIZZ. R7).

Proof: For | > 2m this estimate is obvious. In this case the norm of nL(u, ¢)
can be even omitted. Now let [ be a nonpositive integer. Then the functional
f = L(u,¢) is given by (2.3.22). Here the trace of Pv on the plane ¢ = 0 is a

vector of the form T'(y,0,D,) - Dv with an invertible matrix T'(y,0, Dy) of dif-
ferential operators on R"~! (see Remark 2.3.1). Consequently, for every vector-

function 9 = (Y1,... ,%am), ¥; € W;Il,:rj_lﬂ(R"”l), there exists a function w =

eamT 1) € WZ—,;l)er(Ri) such that Pw|;—o = 1. Here ez, denotes the extension
operator of Lemma 2.2.1. Let ¢(!) be a smooth 27-periodic function on R*~! such

that ¢(y) ¢V () = ¢(¥), ¢V W) n(,0) = (WD (y). We insert v = (W ey, T ((Y)
into (2.3.22). Since n = 1 on supp v, we obtain

(CQ»Q)Q"* = (fa Zﬂ)@"—l = (f, U)Q"—1XR+ — (u, L+'U)Q"—1 xR
= (nf» v)@"-lxR.,. - ("7“7L+'U)Q“—1><]R+ .

This implies (2.3.24). If 0 < [ < 2m, then this inequality can be analogously proved
by means of (2.3.23). The proof is complete. m

Naturally, in Lemma 2.3.2 the function ¢ can be identically equal to one. Then
as a consequence of this lemma we get the inequality (2.3.24) without the functions
¢ and 7.

2.3.4. Existence and uniqueness of the solutions of elliptic boundary
value problems with constant coefficients in the half-space. We return to
the problem (2.2.7), (2.2.8) with constant coefficients. As in the previous subsec-
tions, we assume that ord By, < 2m for k = 1,... ,m + J. Then the Green formula
(2.3.11) is valid and the coefficients of the operators L™, P, Q* and C'* are con-
stant.
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THEOREM 2.3.3. The boundary value problem (2.2.7), (2.2.8) is elliptic if and
only if the formally adjoint problem (2.8.16), (2.8.17) is elliptic. Furthermore,
condition (i) in Theorem 2.2.1 is satisfied for problem (2.2.7), (2.2.8) if and only
if it is satisfied for the formally adjoint problem.

This assertion follows immediately from Theorem 1.2.2.

COROLLARY 2.3.1. If conditions (i) and (i) in Theorem 2.2.1 are satisfied for
the boundary value problem (2.2.7), (2.2.8), then the operator

m+J
(23.25) AT W, (RY) x [] W, e tl/2(gn-t)
k=1

2,per 2,per 2,per

1—2m Rn H l 2m+j—1/2 Rn 1))( H l 2m— Tj+1/2(]Rn_1)

of the formally adjoint problem is an isomorphism for arbitrary | > 2m.

Using this result and the relations between the operators A and AT, we obtain
the following generalization of Theorem 2.2.1.

THEOREM 2.3.4. Suppose that conditions (i), (i) of Theorem 2.2.1 are sat-
isfied. Then the operator A is an isomorphism from (2.3.18) into (2.3.19) for
arbitrary integer l.

Proof: For [ > 2m the assertion of the theorem has been already proved in the
foregoing section. By Theorem 2.3.2, the mapping

WE2m (RT) x WatZ V2 (R™Y) 3 (u, ¢, )

MmO RNy x A2 gt
= (£,9) = A, &,u) € Wi2mO(RY) x Wy (R
is defined in the case I < 0 by the equality

(2326) (fa U)Q"_l xRy + (ga )Q"_l

= (u, L+v)@"—1XR+ (¢ P’Ult =0 + Q )Q" 1 + (u C 'U)Qn 1,
where v € Wy, ]ijTQm(R") veEW, :,:Tu—l/z(R"—l). (Here, for the sake of brevity,
we have used the same notation (-,-)gn—1 for the scalar products in Lo (Q™~1)?™,
Lo(Q™ 1), and Lo(Q™1)™*7).) This means, the operator A is adjoint to the
operator (2.3.25) if we replace the number [ in (2.3.25) by 2m — I. Therefore, for
[ <0 the assertion of the theorem is an immediate consequence of Corollary 2.3.1.

We consider the case 0 < [ < 2m. Let f be an arbitrary functional from

l—p—1/
wim— l(]R") , and let g be an arbitrary vector-function from W, pZT 2(]R” h.

2,per
Forpevery qg € Z"! we > denote by A, the operator of the boundary value prob-
lem (2.2.18), (2.2.19) and also its extension to the space W2 *™(R,) x C’. By
Theorem 1.3.1, the operator A, is an isomorphism from Wl 2m(]R ) x C’ onto
WEHR)* x C™H, Consequently, for each q € Z"~! there exists a unique solu-

tion (4(q,-), (q), u(q)) € W™ (Ry) x C7 of the equation

(2'3'27) -Aq (i"(% )a_‘é(Q),ﬂ(q)) = (f(q’ '),Q(Q)),
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where f(q, ), g(q) denote the Fourier coefficients of f and g. Analogously to the

proof of Theorem 2.2.1, it can be shown that U(q,t) = u(q, (g) ~'t), Q(q) and 4(q)
satisfy the estimate

2m J
(2:3.28) (@ 10U Maqa,, + D@2 15 (@) + 3(@) X iy ()
j=1 j=1

m+J
< (@22 PG ) i + 3 @20 (@) )
k=1

with a constant ¢ independent of f, g and g. Consequently, the function

u(y,t) = Y ulg,t) e
gezn—1
belongs to W4 .., (R%) and the functions ¢;, u; with the Fourier coefficients 65(a),
4;(q) belong to the spaces Wé;ﬁjl/ >(R™1) and Wé;g_l/ ?(R™~1), respectively.
Furthermore, from q'ﬁj (q) = (D{_lu)(q, 0) for j = 1,...,1 it follows that ¢;(y) =
(DI u)(y,0) for j = 1,...,1 and, therefore, (u,¢) € WZI’Q’”(Q’}F). By (2.3.27),
(u, ¢,u) is a solution of the equation

Alu, ¢,u) = (f,9)-
The uniqueness of the solution follows from (2.3.28). m
2.3.5. A regularity assertion for solutions of elliptic boundary value
problems in the half-space. Now we consider problem (2.3.5), (2.3.6) with vari-
able coefficients in the half-space. Our goal is to obtain a regularity assertion like

Theorem 2.1.2 for this problem. Analogously to Theorem 2.1.2, we assume that
the following conditions are satisfied:

a) The boundary value problem
(2.3.29) L(0,Dy,Dy)u=f inRY},
(2.3.30) B(0,Dy, DuJu|_ +C(0,D,)u=g
i g

with coefficients frozen in the origin is elliptic.
b) The coeflicients of L, By and Cj ; satisfy the inequalities

lag;(y,t) —ap;(0)] <e for |8] +j = 2m,

|bki6,5 (¥) — brip,i (0) | <& for |B] + 5 = p,

lek,io(y) — crgip(0)| <& for |B] 47 = px + 75,
where ¢ is a sufficiently small positive number.

We denote by A the operator of the boundary value problem (2.3.5), (2.3.6) and
by A© the operator of the problem

L°(0,Dy+i1,D;+ )u=f in R},
B°(0,Dy + 3 I,D; + 1)u ,HC0,Dy + Mu=g inR*'.
i g
Then condition a) implies that .A(®) is an isomorphism from the space (2.3.18) onto

(2.3.19) (see Theorem 2.3.4, Remark 2.2.3). This will be used in the proof of the
following theorem.
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THEOREM 2.3.5. Let (u, ¢,u) € Wyor (R?) x Wé;—;l/z(]l{”_l) be a solution
of the equation

A(u, ¢,u) = (f,9)

We assume that f € Wé;ﬁTH’O(R’i), ge€ Wé;f:rl/z (R™Y), and conditions a), b)
are satisfied. Then the solution belongs to the space
(2.3.31) Wape ™ (R) x Wy o2 (R")

and satisfies the estimate
(2.3.32)

s @ wllan < e (1 lligamesogegy +18lyssr2r2 oy + @)l )

where || - ||; denotes the norm in the space (2.3.18) and || - ||;+1 denotes the norm in
(2.3.31).

Proof: First let | > 2m. Then A can be identified with the operator
W3 per (RT) X W, /2R 3 (u,u)

2,per

N (LU, BU]t:O + Cy) = Wl—2m(]Ri) % Wé;gr—l/z(Rn—l)

2,per
and the proof proceeds similarly to Theorem 2.1.2. We introduce the following

operator S, ; defined on the space W;;:T/ *(R™=1) with arbitrary integer s :

(Sp d)(y) = 2m) "2 Y dlq) eV
lalzp
(cf. (2.1.8)). Analogously, we define the operator S, on W3 . (R%}), s >0, as

(L+7%)"2(q)
0

Spau=(2m)~"D/2 3" (;ltx( )J"er+U)(q,(¢J>t) ey,

qeZn—1

Here F;_,, denotes the Fourier transformation (1.2.2), F..., its inverse, x is an
arbitrary smooth function on R equal to zero in the interval —1 < ¢ < +1 and
to one outside the interval —2 < t < +2, e is a continuous extension operator
Ws(R4) — W3 (R) and U is defined by (2.2.3).
Obviously, the solution (u,w) of (2.3.5), (2.3.6) satisfies the equation
(2.3.33) AO(u,u) + (A = AD)(S, 20, 5p1u)
— (£.9) ~ (A= AV) (u= Sy, u=5,50).

It can be easily verified that S, ; and S, 2 have analogous properties to the operator
S, in Lemma 2.1.1. In particular, the operator

(’u‘aﬂ) - ('A - A(O))(Sp,2u7 Sp,l@)

has a small norm if € is small and p is large. Hence for sufficiently large p the
operator on the left-hand side of (2.3.33) is an isomorphism from

l4+1—1/2 n—
(2:3.34) Wi per (RE) x Wyt /(R
onto W3 2 (R) x ng;fr_ 1/Z(IR"_l) for arbitrary given [ > 2m. Moreover, the
operator

(uay) - (-A - A(()))(u - Sp,2uv u— Sp,l@)
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on the right side of (2.3.33) continuously maps the space (2.3.34) into Wé;}zr R7Y) x
Wé;ﬁj 1 2(IR”‘l). This proves the assertion of the theorem in the case [ > 2m.
Now let { < 0. We rewrite the equation A(u, ¢,u) = (f,g) as
(AQ + AW (u, ¢,u) = (£,9) = (A= A — AD) (u,4,).

Here the functional AM (u, ¢,u) = (f(V,gM) € Wim HR™)* x Wé_ﬁ_l/Q(]R"_l)

2,per ,per
is defined for given (u, ¢,u) from the space (2.3.18) by the equalities
1 _ o+ 1
(O 0)gim, = (u, (BF = (E)OD, + 51D+ H)Spa0) .,

+(& (P~ P°(0,Dy + § 1, Di + ))Sp0l=0)
@V 0o = (@7 -(@)* 0.0y +31)S,)

+(w, (€ = (€)' 0.0y +31)S10)

Qn—l

Qn—l

Qn—l '

Since the norm of the operator A is small for small £ and large p, the operator
A® + AWM is an isomorphism from (2.3.18) onto (2.3.19) for arbitrary [ if ¢ is
sufficiently small and p is sufficiently large. Furthermore, the operator .4 — A —

A® continuously maps the space (2.3.18) into ng‘ejl_l(Ri)* X Wé;fj 1/2(IR"‘1).
Consequently, the assertion of the theorem is true for [ < 0.
Similarly the theorem can be proved in the case 0 <! < 2m. m
COROLLARY 2.3.2. Let (u,u) € W} ., (R7) x Watl V2 (R™1), I > 2m, be

;per
a solution of the boundary value problem (2.3.5), (2.3.6). If f € Wé;ﬁ:"“(Rﬁ),
g€ Wy, or ' (R™ 1), then (u,u) belongs to the space Wit (R7) xWé;ﬁ:’l/Q(Rn‘l)
and satisfies the estimate

(2335) [ w)lir < e (Il gy + gl yiosens guosy + N w)l),

where || - ||k denotes the norm in the space W5 .. (R7) x W; :Z—T_l/ 2(Rm-1).

Proof: By Theorem 2.3.5, the triple (u,$,u) = (u, Dul:=0,u) belongs to the
space (2.3.31) and satisfies the estimate (2.3.32). Since

lullws .

for I > 2m, we get (2.3.35). m

@) < (@, Duls=o) lyiom oy < cllullwy . @a)

2.3.6. Necessity of the ellipticity. Analogously to Lemma 2.1.2, we show
now that (2.3.32) implies Condition a).

LEMMA 2.3.3. LetU be an arbitrary neighbourhood of the origin. Suppose that
estimate (2.8.32) is satisfied for all (u,$) € Wzl:;i’fm(Ri), u € WQH;,S' 12(Rr-1y
such that suppunNQ™ C U, supppNQ™* cUNQ™ !, suppunQ™~t cUNQ™ .

Then problem (2.8.29), (2.3.30) is elliptic.

Proof: If u, ¢ are equal to zero outside a sufficiently small neighbourhood of
every point ¢ € Z™ ! and u is equal to zero outside a sufficiently small neighbour-
hood of the set {(g,0) : ¢ € Z""1}, then, by the same arguments as in the proof of
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Lemma 2.1.2, we can deduce the inequality
(2336) (w8, w1 < ¢ (I2°(0, Dy, D) (1, 8)lyiim oy
+[1B°(0, Dy, D¢) (u, @) + C°(0, Dy)ull  1-u+1/2 g,y + II(u,Q,_u)Hz)
W2,per (R )

from (2.3.32), where || - ||, || - |li+1 denote the norms in (2.3.18) and (2.3.31), re-
spectively. Since the operators L°(0, Dy, D;), B(0, Dy, D;), C,‘;,j(O,Dy,Dt) are
translation invariant, we obtain (2.3.36) for functions having arbitrary support
with respect to the variable y.

Let (v,%) = (v,91, ... ,%2m) be an arbitrary element of the space Wé+1’2m(R+)

with compact support, v = (vy,...,v;) an arbitrary vector in C’, and ¢ € Z"~!,
|g] > p, where p is sufficiently large. We set

u(y’ t) = 'u((q)t) eiq.y’

¢J(y) = <q>]—1 ’L/)J ezq-y, J = 1, e ,2m,

ui(y) = (@ v e, j=1,...,J,
Obviously, (u,$) = (u, ¢1,... , ¢2m) is an element of the space Wzl;i;zm (R7%). Since

the function ¢ — v((g)t) has small support, the inequality (2.3.36) with a constant
c independent of ¢, |q| > p, is satisfied for the just introduced u, ¢, u.
For k=1, k =1+ 1 we have

(2.3.37) ”(“’@”Wﬁ;(m) = (27T)(n_1)/2 <¢1>k_1/2 ||(U,@||W2‘°’2'"(R+)
and
(2.3.38) oty ry =172 gy = @2m) D2 (R |y =1,

We show that
(2339)  2°(0, Dy, Do), D)l oas,

— (2m)" D/ (g2 L2(0, () g, Dr) (v ) g s-amoa
for all (u,¢) € W; ﬁe’f (R7%). In the case k > 2m this follows immediately from the
representation (2.2.4) for the norm in W4 ., (R%) and from the equality
LO(07 Dy; Dt) (’U/,Q) = LO(O’ Dya Dt)u = <q>2m eiq~y LO (Oa <Q>—IQ» D(q)t) U(<q)t)
In the case k£ < 0 we have
L°(0, Dy, Dy) (u,¢) = f = (2m)~"V/2 f(g,t) 0¥,
where, according to (2.3.2), (2.3.22), the functional f(q,-) € W2™ *(R,)* is defined
by the equality
(2m)(n=1)/2 (Jé(q, Y, w(.))R+ = (f, eiq.yw)m
= (u, (L°)*(0, Dy, Dy) eiq'yw)m + (¢, P°(0, Dy, D;) € w|1=0) gus

2m

= 2m)" (((@)t), ()00, D), + 30V~ 3 P00, D0y,

w € WP *(R, ). Hence the norm of f in Wi’;‘;k(Ri)* is equal to

(@)F 22| F (g, ‘)“ng—k(RJr)*
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(see Lemma 2.3.1), where the functional F' is defined as follows:

(Fw, = (£(a,(@)7'), w)g, = (@) (f(@1), w((@)t)y,
= (277)(71-—1)/2 <Q)2m ((’U, (Lo)+(07 (]/(l]), Dt)w)R+ + (%7 PO(Ov Q/<Q>7 Dt)wltzo)czm)
= (2m) D72 (q)*™ (L°(0,4/(0), Do) (v,9) , whr, ,  w € W™ H(R4),

ie.,

F(g,t) = (2m)""D/2(q)*™ L°(0, (¢)"'q, D¢) (v, %)
This proves (2.3.39) in the case k < 0. Analogously, (2.3.39) can be proved in
the case 0 < k < 2m by means of the representation (2.3.23) for the functional
Lo(Oa Dy7 Dt) (u’?)
Furthermore, using the equality
Bo(()? Dy»Dt) (u79) = QO(O’Dy)Q’
we obtain

(2:340) |[B°(0, D, D) (u,8) + C°(0, Dy )ullysu1/2g 1y

= (2m)(" D72 (q)* 712 |B°(0,4/(a), Ds) (v, %) + C°(0,4/(@))2llcmes -
From (2.3.36) - (2.3.40) it follows that

(2341) [|(0,%,0)lgprsamge, pwer < c(HLo(o,<q>—1q,Dt)(u,@||wé+l_2m,o(R+)

+|B°(0, (@) 0, D) (v, 1) + C°(0, (0) 0]

(Cm-l—J
+<Q>_1 “(’U7$7 Q)IIWZL’2W(R+)X(CJ>

for all (v,7) € WEHH™(R ) with support contained in an arbitrary given finite
interval [0,7], v € C™*7, g € Z"1, |q| > p. Here the constant c is independent of
(v,,v) and gq, |q| > p. If p is sufficiently large, then the term (q)~! ||(v, %, )| on
the right-hand side of (2.3.41) can be omitted. Since every 1 on the unit sphere
in R*~! can be approximated by a sequence of elements (q)~!q, where ¢ € Z"~!,
lg| > p, and the set of all (v,9) € With*™ (R, ) with compact support is dense in

Wy 2 (R, we get

2342) 0% )l yuer < e (IL°00 D) @ D) lggri-mmoge,
+1B (O,U,Dt) (’U,%) +C (O’U)Q’Cm+-1>’

for all (v,9) € WihAmR,), v € C/, n € R*!, || = 1. Consequently, by the
second part of Theorem 1.3.2, the polynomial L°(0, 7, -) has no real zeros for || = 1,
and condition (ii) in Definion 1.2.1 is satisfied for the problem

(2.3.43) L°(0,n,D)v=f, t>0,

(2.3.44) B°(0,m, Dy)v|,_o +C°(0,m)u =g

with |n| = 1. Applying the transformation ¢ = |n|t’, we obtain the validity of

these conditions for problem (2.3.43), (2.3.44) with arbitrary n € R*~1\{0}. From
Lemma 2.2.3 we conclude that the operator L°(0,D,) is properly elliptic and,
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therefore, problem (2.3.43), (2.3.44) is regular for every n € R"~1\{0}. This proves
the ellipticity of the boundary value problem (2.3.29), (2.3.30). m



CHAPTER 3

Elliptic boundary value problems in smooth
domains

In this chapter we explore elliptic boundary value problems for 2m order differential
equations in a domain 2 C R™ with smooth boundary. Throughout this chapter,
it is assumed that the orders of the differential operators By in the boundary
conditions are less than 2m. The generalization to arbitrary boundary conditions
and to boundary value problems for systems of differential equation is one of the
goals of the next chapter.

In the same way as in Chapters 1 and 2, we extend the operator of the bound-
ary value problem to Sobolev spaces of arbitrary integer order. Furthermore, we
introduce the formally adjoint problem, using a Green formula which is analogous
to that in the foregoing chapter. The main result of this chapter is the proof of
the Fredholm property for the operators of elliptic boundary value problems. To
this end, we derive a priori estimates for the solutions and investigate the adjoint
operator.

In Section 3.5 we study the Green functions for elliptic boundary value prob-
lems, while the last section in this chapter is dedicated to elliptic boundary value
problems with parameter. We show that these problems are uniquely solvable if
the parameter X is situated near the imaginary axis and its modulus is sufficiently
large.

3.1. The boundary value problem and its formally adjoint

We derive a Green formula for boundary value problems in an arbitrary smooth
domain. This enables us again to introduce a formally adjoint problem. Under ad-
ditional assumptions on the boundary conditions, other formally adjoint problems
can be defined by means of the classical Green formula. We deal with the question
of equivalence of boundary conditions and show that, in particular, all formally
adjoint problems are equivalent. Furthermore, we prove that equivalent boundary
value problems are simultaneously elliptic.

3.1.1. Formulation of the problem. Let ) be a domain, i.e., an open and
connected subset of the Euclidean space R”. We assume that the boundary 0f2 is
smooth (from the class C*°) and consider the following boundary value problem

(3.1.1) Lu=f in(Q,

(3.1.2) Bu+Cu=g on 09,

where,

(3.1.3) L(z,D;) = Y aa(x)Dg
la|<2m

59
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is a differential operator of order 2m with coefficients a,, infinitely differentiable up
to the boundary, B is a vector of differential operators

(3.1.4) Bi(,Dy) = Y bra(z)Dg, k=1,...,m+J

lo| <pe
ord By, < pg (Br = 0if p < 0), with infinitely differentiable coefficients by, and
C is a matrix of tangential (see Definition 3.1.1 below) operators

(3.15) Crj(®,Dz)= > crjal@DS, k=1,...,m+J, j=1,..,J
la|<pr+T;
on 0, ord Cy; < pr + 75 (Ck,; = 0 if pi +7; < 0), with coeflicients ¢ ; which are
infinitely differentiable in a neighbourhood of 99.
Here py, and 7; are given integer numbers such that
Tj+maxpu, >0 for j=1,...,J
(If this condition fails for one j, then the operators C1 j, ... ,CpqJ,; are zero and,
therefore, the component u; of the vector-function u does not appear in the bound-
ary value problem.)
Note that the orders of the operators By, Ck ; may be strictly less than py and
Wx + T, respectively.

DEeFINITION 3.1.1. A differential operator P(z, D) of order k with infinitely
differentiable coeflicients in a neighbourhood of 912 is said to be tangential on 6 if
P(z, D;)v|sq depends only on v|sq for every smooth function v in a neighbourhood
of 9.

If the differential operator P(z,D,) is tangential on 92 and u is an infin-
itely differentiable function on 99, then P(z, D,)u is defined as the restriction of
P(z,D;)v to 09, where v is an arbitrary infinitely differentiable extension of w.

REMARK 3.1.1. Let «/, z,, be local coordinates in a neighbourhood of 2(%) € 8Q
such that 02 is given by z, = 0. Then every tangential operator has the form
P(z',zy, D,) in this neighbourhood.

Ezample. Let 0N be the circle z7 +z3 = 1 and let 7, 6 be the polar coordinates
in the (21, z2)-plane. Then the operator

o _ (= 9 _, i)’“
a0k — \"! 5, 2 91y

is tangential on 9.

In problem (3.1.1), (3.1.2) the function f on © and the vector-function g =
(g1, ,gm+s) on O are given, while u is an unknown function on 2 and u =
(u1,...,uy) is an unknown vector-function on 9.

3.1.2. Ellipticity of the boundary value problem. As in Chapter 2, we
denote by L°(z, D,) the principal part of L(z, D,) which contains only the deriva-
tives of order 2m. Analogously, the operators B}, and O’,‘j’ ; consist of the terms in
(3.1.4), (3.1.5) with derivatives of order uy and pi+7; , respectively. If ord By, < py
or ord C,; < px + 75, then we set By = 0 and Cy ; = 0, respectively. Thus, By
and Cf, ; depend on the choice of the numbers pj and 7; .

In the following, let v = v(z) be the exterior normal to the boundary 89 at
the point z.
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DEFINITION 3.1.2. The boundary value problem (3.1.1), (3.1.2) is said to be
elliptic if
(i) The operator L is elliptic in 2. This means, for every (0 € Q the operator
L(z9, D,) with coefficients frozen in z(%) is elliptic (see Section 2.1.2).
(ii) The boundary value problem

L°(z9,¢ + v(z D)D) u(t) = f(t) fort >0,
B°(z,¢ + v(z)Dy) u(t) |,_, + C° (2, & )u=g

is regular (see Definition 1.2.1) for every z(%) € 9Q and every vector &' # 0
tangential to 0Q at z(0).

3.1.3. The Green formula. Let D, = —i9/0v be the derivative in the di-
rection of the exterior normal v to 9§). We denote by D the column vector with
the components 1,D,,...,D?™ 1. In the following we will assume always that
the orders of the operators By are less than 2m. Then the vector B admits the
representation

(3.1.6) Bulan = Q - Dulaq
for all u € C*°(Q)), where

Q= (Qkis)1cheme, 1<i<
is a matrix of tangential differential operators Qx,j, ord Qx,; < px +1—J, Qr,; =0
if e +1—75 <0. N
Let Lt be the formally adjoint operator to L. Then for all u,v € C§*(Q2) we
have

(3.1.7) /Lu-ﬁdm = /u-L"’vd:E—}—/(Du[ag, P’Ulaﬂ)czm do
Q oN

(cf. formula (2.3.15)), where P is a vector of differential operators P;(z,D;)
j =1,...,2m, with smooth coeflicients, ord P; < 2m — j. The restrictions of the
coeflicients of the operators P; to the boundary 0 are uniquely determined by L.

REMARK 3.1.2. There is the following representation for the vector P :
(3.1.8) PU'@Q =T~’D’U|3Q,

where T' = (T s)1<j,s<2m is a triangular matrix of tangential differential operators
T;son0Q,ordTj, <2m+1—j—sforj+s<2m+1,T;,=0if j+s>2m+ 1.
The elements T} 2m—j+1 are functions,

Tjom—ji1(2®) = =i Lo(z©®,v(z®))  for 2 € 09, j=1,...,2m.

(The last formula holds if we write formula (3.1.7) in local Cartesian coordinates y,
t where y = (y1,... ,yn—1) are coordinates on the tangent plane to 0Q in z(© see
Remark 2.3.1). The functions Tj 2m—j+1 do not vanish on 09 if, e.g., the operator
L is elliptic in Q.

Furthermore, let C*, Q1 the formally adjoint operators to C and @, respec-
tively. The operator C* is the J x (m + J)—matrix of the tangential differential
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operators Ck (z,Dz), j=1,...,J, k =1,..., m+ J, on 00. If ¢ and ¢ are
arbitrary smooth functions on 0 with compact supports, then

/Ck,]qﬁ Pdo —8é¢ Cf W do.

THEOREM 3.1.1. Let L, B and C be the operators given by (5.1.83)—-(3.1.6).
Then the following Green formula is satisfied for eachu, v € C$*(Q), u € C°(99)7
and v € C&(6Q)™*

(3.1.9) /Lu-ﬁdx+/(Bu|aQ+Cy,y)Cm+J do
89

= /u-L+v daz—!—/ (Dulsq , Pvloa + QT )szdo—i- / (u, C+y)cjda.
! o) o9
Proof: By the definition of the operators CT, QF, we have

/ (Cg’ y)(cm+J do = / (ga C+Q)CJ do

80 80
and
/(Bu|an s 0) o 4O = / (Q - Dulog, v) gy do = / (Dulan, Q1 v) corm do .
59 89 50

The last two equalities together with (3.1.7) imply (3.1.9). m

DEFINITION 3.1.3. The boundary value problem
(3.1.10) Ltv=f inQ,
(3.1.11) Pv+Qtv=g, Cfu=h
is said to be formally adjoint to (3.1.1), (3.1.2).

THEOREM 3.1.2. The boundary value problem (3.1.1), (3.1.2) is elliptic if and
only if the formally adjoint problem (8.1.10), (8.1.11) is elliptic.

Proof: Obviously, the differential operators L and L™ are simultaneously prop-
erly elliptic. Let (%) be an arbitrary point on the boundary Q. Then the Green
formula (2.3.11) in a half-space is valid for the principal parts at z(©) of the opera-
tors of the boundary value problem (3.1.1), (3.1.2). Consequently, the problem

(L) (@,¢ +v(z (0))Dt) (t)=f(t) fort>0,
P (@, ¢ + v(@ D) v(t) [, + (@) (@, &) u=g, (C)* =, )u=h

is formally adjoint to the boundary value problem

Loz ¢ + v(z®)\D,) u(t) = f(t) fort >0,

B°(z, ¢ + v(@NDy) ut)|,_, + C°(=,)u=g
for every z(9) € Q) and every vector £’ # 0 tangential to dQ in 2(9. By Theorem
1.2.2, every of these two problems is regular if and only if the other one is elliptic.

Therefore, condition (ii) in Definition 3.1.2 is simultaneously satisfied for problem
(3.1.1), (3.1.2) and for the formally adjoint problem. m
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3.1.4. The classical Green formula. Now we consider a special class of
boundary value problems, namely the classical boundary value problems

(3.1.12) Lu = f inQ,
(3.1.13) Byu = g ondQ, k=1,...,m,
where J = 0 and the vector u = (uj,... ,uy) does not occur.
DEFINITION 3.1.4. The system of the boundary operators Bj, ... , B, is said

to be normal on 9 if

(i) ord By # ord B; for k # j,

(ii) B(z(®,v(z(®) # 0 for each (0 € 9Q.
If additionally the orders of the operators By are less than m, then this system is
called a Dirichlet system of order m on 0f2.

Note that, by Remark 3.1.2, the operators P, ... , Pay, in (3.1.7) form a Dirich-
let system of order 2m on O if L is elliptic.

We suppose that Bi,..., B, is a normal system of boundary operators of
orders pr < 2m (k = 1,...,m). From condition (ii) it follows that the elements
Qk,pp+1 of the matrix @ in (3.1.6) are functions not vanishing on 0§2. The system of
the operators By, ... , By, can be completed by operators By (k=m+1,...,2m)
of order pr < 2m to a Dirichlet system of order 2m on 952. Then every of the

operators By, k =1,...,2m, has the representation

2m
3.1.14 B ' - pi-t ‘ ,
( ) KU a0 j_ZleJ Y 80

where Qy, ; are tangential differential operators, Qg ; =0 for j > pr+1, ord Qr ; <
pr +1—j for j < pg, and Qg p,+1 are nonvanishing functions on 0. The matrix

has an inverse

(A]»,k(x, DI))1gj,kgzm )

where A; , are tangential differential operators on 02 of orders j—1—puy if j > ux+1,
Ajr =01if j < py + 1. From this it follows that the normal derivatives DI ™! can
be written in the form

2m

J—1 = : ] =
(3.1.15) Di u‘m ;Amk(x,Dz)Bku’aﬂ, j=1,...,2m,

Hence by (3.1.7), we get
2m 2m

/Lu-ﬁdw = ’U,'L+’UdI+Z/ZAj,IchU'mdU

Q Q/ I=lgq k=1
Q

2m 2m
= u-L"‘vdx—l—Z Bku-ZAIkPjvda.
k=139 j=1

If we set

2m
—B for k=1,...,m
+ p - k+m e
(3.1.16) Z:lAj,kPJ - { B, ,, for k=m+1,...,2m,
i=
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we obtain the classical Green formula

(3.1.17)
/Lu-ﬁdm+Z/Bku-B§c+mvda=/u‘L+vdw+Z/Bk+mu-Bfkvda.
) k=15q Q k=lsa

The boundary value problem
(3.1.18) LTv=f inQ,
(3.1.19) B,v=hy ondQ (k=1,...,m)

is said to be formally adjoint to (3.1.12), (3.1.13) with respect to the Green for-
mula (3.1.17). The classical Green formula has the advantage that the number of
the unknowns in the formally adjoint problem is the same as in the starting prob-
lem. However, one has to suppose that the boundary conditions in the starting
problem are normal. The following lemma describes the connection between this
formally adjoint problem and the boundary value problem which is formally adjoint
to (3.1.12), (3.1.13) with respect to the more general Green formula (3.1.9).

LEMMA 3.1.1. Let Bg, k = 1,...,m, be operators of order p < 2m which

form a normal system on 0. Then (v,v) = (v,v1,...,Um) iS a solution of the
formally adjoint problem
(3.1.20) Lto=f inQ,
(3.1.21) Piv+Y Qf k=g, ondQ, j=1,..,2m,
k=1

if and only if
(i) v 4s a solution of problem (8.1.18), (3.1.19), where

2m

hi = 2 A_'-jl:k+m 93

=1

(ii) the functions vy are given by the equality

. 2m
(3.1.22) v = B,g+mv|m +3 At
j=1
Proof: From (3.1.14) and (3.1.15) it follows that
2m 2m
(3.1.23) ZAk’j Qj,s = ZQk’j Ajys = (5k75 for k’, S = 1, “e ,2m,
j=1 j=1

where 8 s denotes the Kronecker symbol. We assume that (v,v) is a solution of
the problem (3.1.20), (3.1.21). Multiplying (3.1.21) by AIS and summing up over
j=1,...,2m, we get

2m m 2m 2m
(3.1.24) ZA;:S P;v+ Z (Z Aj:s Q:]) v = ZAIS g; on 0.
j=1 k=1 j=1 j=1

By (3.1.16) and (3.1.23), the left-hand side of (3.1.24) is equal to —B,_,,v + v, for

s+m
s=1,...,mand to B,_,,v for s =m+1,...,2m. Consequently, v is a solution

of (3.1.18), (3.1.19), and v1, ... ,v,, are determined by (3.1.22).
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If conversely v is a solution of (3.1.18), (3.1.19) with hy = 2521 A;:k +m 95 and
v1,... ,Um are given by (3.1.22), then (v,v) satisfies (3.1.24) for s = 1,...,2m.
Multiplying this equation by QI# and summing up over s = 1,...,2m, then by

means of (3.1.23), we get (3.1.21). This proves the lemma. m

3.1.5. Examples. Let A = §%/8z% + --- + 9/8x2 be the Laplace operator in
R™.

Ezxample 1. We consider the boundary value problem

(3.1.25) Au=0 inQ,

(3.1.26) bu+cu; =g on 09,
Ou Oup

(3127) 5 - 6_7' =0 on 89,

where ) is a plane domain with smooth boundary, b, ¢, g are given real-valued
continuously differentiable functions on 99, 8/0v denotes the derivative in the
direction of the exterior normal, and /87 denotes the derivative in the direction
tangential to 9.

This boundary value problem is equivalent to the Cauchy-Hilbert problem: Find
a function u-+4v which is holomorphic in Q, continuous in 2, and satisfies the bound-
ary condition bu + cv = g on 9Q. (If we set u; = v|sq, the boundary condition
(3.1.27) holds from the Cauchy-Riemann equations.)

The following two examples illustrate the assertion of Lemma 3.1.1.

Exzample 2. We consider the Dirichlet problem for the Laplace operator
(3.1.28) Au=f inQ,
(3.1.29) u=g on 0.
Here the system of the boundary operators consists only of the operator B = 1

and is obviously normal on 8. The formally adjoint problem with respect to the
classical Green formula

/Au.ﬁda:+/u'(—9§d0:/u-Aﬁdx+/@~Edo
ov ov
Q N Q o0

coincides with the starting problem (3.1.28), (3.1.29). If we use the more general
Green formula (3.1.9) in Theorem 3.1.1

/Au-ﬁdx-l—/u'mda:/u-Aﬂdw+/u-(ﬁl - %)da+ @ ‘vdo,
ov ov
Q o9 Q o0 80
we obtain the formally adjoint (in the sense of Definition 3.1.3) problem
Av=f inQ,
v=g1, v1-%=gz on 09
which is obviously equivalent to problem (3.1.28), (3.1.29).
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Ezample 3. Let Q be a plane domain with smooth boundary 9Q. We consider
the problem with oblique derivative

(3.1.30) Au=f in{,
Ou ou
(3.1.31) Bu = b (z) £ + bg(x)a—T =g on 09,

where b1, by are smooth functions satisfying the condition (b1, b2) # 0 on Q. The
last condition ensures the ellipticity of the problem (3.1.30), (3.1.31). In the special
case by = 1, b, = 0 we obtain the Neumann problem

Au=f in Q, 6—:j=g on 0.

0

The boundary condition (3.1.31) is normal if b; # 0 on 9. Then the classical
Green formula

o 0
Tl — . —1z = . T —_ . JUUN R — —1p 5
/Au vdx /Bu by vdo /u Avdzx /u (81/ 8T(b1 b2’U)) do
Q 80 Q 8Q

holds and the formally adjoint problem with respect to this Green formula is

(3.1.32) Av=f in,
(3.1.33) —gg + %(bl_l byv) =g on O

The coefficients in the boundary condition are bounded if b; # 0 on 992.
Now we construct the formally adjoint problem with respect to the Green
formula (3.1.9). In our example formula (3.1.9) has the form

/Au-ﬁdx-l—/Bu-v—lda
Q l9)

B oo 8, __ ou ,_  , __
—/u-Avdz—/u-<5+§(b2v1))do+/b—y-(v+b1v1)da,
Q o) o)

and the formally adjoint boundary value problem to (3.1.30), (3.1.31) with respect
to this Green formula is

(3.1.34) Av=f inQ,
0 8 — —
(3.1.35) _O_Z - E(bg v1) =91, vtbiup =gy ondN.

Obviously, in the case b # 0 the pair (v, v;) is a solution of (3.1.34), (3.1.35) if and
only if v is a solution of the problem (3.1.32), (3.1.33) with

0 —
g=91+§(b11b292)

and v; coincides with the function b; 1(92 — v|aq). Therefore, (3.1.34), (3.1.35) can
be considered as an equivalent problem to (3.1.32), (3.1.33) if b; # 0 on 0. In the
case, when b; = 0 on a non-vanishing subset of 09, the problem (3.1.34), (3.1.35)
cannot be reduced to a boundary value problem with only one unknown.
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3.1.6. Equivalence of boundary conditions. We have seen that the for-
mally adjoint problems with respect to different Green formulas are equivalent in
certain sense. Now we want to give a precise definition for the equivalence of
boundary conditions.

Let two boundary value problems for the same differential operator L of order
2m be given:

Problem 1. Lu= f in §,
Bu+ Cu =g on 09,

Problem 2. Lu= f in §,
B'u+C'v=~h on 09.

Here B is a vector of differential operators By, (k=1,... ,m+J), ord By < g,
B’ is a vector of differential operators B;, (k=1,... ,m+J'), ord B; < pu}, C'is a
(m+J) x J—matrix of tangential differential operators Cy, ;, ord Cy ; < ug+7;, and
C’isa (m+ J') x J'— matrix of tangential differential operators Cj ;, ord Cy, ; <
i, + 7;. We suppose that

m4J J m+J’ J’

(3.1.36) E Lk + ZT]' = Z W + ZTJI
=1 = k=1 i=1

DerINITION 3.1.5. Problem 1 and Problem 2 are said to be equivalent if there
exist

a) a vector B of differential operators By, k =m+ J + 1,...,d, and a vector
B’ of differential operators By, k = m+ J' +1,... ,d, where ord By < py,
ord B, < i,

d d
(3.1.37) D =
k=1 k=1
b) an invertible matrix
S = (Sk,)

of tangential differential operators Sy ; on 0Q, ord Sk ; < pj — p;,
¢) an invertible matrix

1<k,j<d

S = (S;C,j)lgk,jgd—m
of tangential differential operators Sy, ;, ord S, ; < 7;—7;, where 7; = —
forj=J+1,...,d=m, 7] =—pp, ;forj=J +1,...,d—m
such that
(3.1.38)

C 0 e 0 y Bu _ (Bu
S( 0 ligm—y ) _( 0 Iim-y ) 5§ and S <BU> aQ_ (B’“)

for u € C>°(2). Here I, denotes the identity matrix of size s x s.

o

REMARK 3.1.3. By (3.1.37), the determinant of S is a function on 9. The
invertibility of the matrix S means that the determinant of S does not vanish on
O0. Then the inverse matrix to S is a matrix of tangential differential operators of
order not greater than puy — ;.



68 3. ELLIPTIC PROBLEMS IN SMOOTH DOMAINS

Analogously, from (3.1.36) and (3.1.37) it follows that
d—m d—m
=27
j=1 j=1

and, consequently, the determinant of &’ is a function. If this function does not
vanish on 952, then &’ is invertible. The inverse to S’ is a matrix of tangential
differential operators of order not greater than T]’. - Tk.

Hence the equivalence relation for boundary value problems given above is
symmetric. Furthermore, it can be easily shown that this relation is transitive.

Ezample 1. We consider the formally adjoint boundary value problem (3.1.10),
(3.1.11) and construct the formally adjoint problem to it. Obviously, the Green
formula

(3.1.39) /u'L_‘i"udx—i—/(y, (PU+Q+2))sz da—l—/(g,C"'g)CJ do

Q 89 80
=/Lu-ﬁdm+/(Tﬂg—Du),Dv)Cmda—i—/(Qy+0y,y)cm+1 do,
89 89

is valid for all u,v € C§°(Q), u € CL(0N)7, v € CF(AN)™, w € C®(6N)?™,
where T is the matrix defined in Remark 3.1.2. Hence the boundary value problem
(3.1.40) Lu=f in Q,
(3.1.41) T Du+THw =gV, Qu+Cu=g? ondQ
is formally adjoint to (3.1.10), (3.1.11). We show that this problem is equivalent to
problem (3.1.1), (3.1.2).

The boundary value problem (3.1.40), (3.1.41) contains 3m + J boundary con-

ditions. The numbers ), T]/- which determine the orders of the differential operators
in (3.1.41) are

_{ 2m —k for k=1,...,2m,

M Pr—om for k=2m+1,...,3m+J
and

7 = { i;zjm igi ; _ ;m+ 12m 2m+ J.
Obviously,

3m+J 2m+J m+J J

DMt D= mA YT

k=1 j=1 k=1 j=1
If L is elliptic, then the matrix T is invertible. Consequently,

0 -7t
S =
( Im-l—J _Q >

is an invertible (3m+J) x (3m+J)—matrix. The order of the differential operator in
the k-th row and j-th column of S is less or equal to pj, —p;, where pp, = k—m—J—1
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fork=m+J+1,...,3m+ J. Since B = Q - D, we have

(o) (07) o (54 )= (e o) (0 7%7)

Therefore, the boundary value problem (3.1.1), (3.1.2) is equivalent to the problem
(3.1.40), (3.1.41).

Example 2. Let us consider the formally adjoint problems to the classical
boundary value problem (3.1.12), (3.1.13) with a normal system of boundary oper-
ators By (k =1,... ,m) of orders less than 2m. For this problem we have established
two formally adjoint problems — the problem (3.1.20), (3.1.21)

L*v=f inQ, PU+Q+y=g on 0N
which is formally adjoint to (3.1.12), (3.1.13) with respect to the Green formula
(3.1.9) and the problem (3.1.18), (3.1.19)
Ltv=f inQ, Bjv=hy on 69

which is formally adjoint to (3.1.12), (3.1.13) with respect to the classical Green
formula (3.1.17). We show that both problems are equivalent.

In this case we have J = m, J' = 0, d = 2m. The components P of the
vector P are differential operators of order not greater than oy ©oom —k (k =
1,...,2m), and the orders of the operator sz in (3.1.21) satisfy the inequality
ord Q;“,k < ok + 75, where 7, = p; +1—2m (j = 1,... ,m). Furthermore, the order

of the operator B;, (k =1,...,m) in (3.1.19) is equal to p}, ©oom—1— Wkt

Since p1 + - - - + pom = m(2m — 1), we have
2m m m
PILADILED Y
k=1 j=1 k=1

i.e., the condition (3.1.36) is satisfied. Let uj, %/ ord B, =2m —1— pp_p for
k=m+1,...,2m, and let S be the matrix

_( 0 Im +
5= ( ~I, O ) AT
where the matrix A is defined by (3.1.15). The elements Sy ; (k,j =1,...,2m) of

the matrix S are tangential differential operators satisfying the condition ord Sy ; <
uy, — 0j. From (3.1.16) it follows that

B
S-P= :
By
By (3.1.15), the matrix Q* consists of the first m columns of (AT)~!. Thus, we
have
I
At Q+ — ( 671 )

and therefore,

S.QF = ( I?n ) (=I).
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This proves the equivalence of the boundary value problems (3.1.18), (3.1.19) and
(3.1.20), (3.1.21).
Ezample 3. The boundary value problems

Ay = f in Q,
ou

(3.1.42) u=g1, 5o =02 on 0N}
and
A%u=f in Q,
ou ou
(3.1.43) %—l—u—hl, %—U—hz on Of)

are not equivalent in the sense of Definition 3.1.5, although the vectors of the
boundary operators in (3.1.42) and (3.1.43) are connected by the equality

(41) (o) = (ol 1)

However, here the condition (3.1.36) on the orders of the boundary operators is not
satisfied. Note that the first problem is elliptic, while the second one is not elliptic.

THEOREM 3.1.3. Any two equivalent boundary value problems are elliptic or
not elliptic simultaneously.

Proof: Let Problem 1 and Problem 2 be equivalent boundary value problems
such that the assumptions of Definition 3.1.5 are valid. Since the equivalence rela-
tion is symmetric, it suffices to show that the validity of Condition (ii) in Definition
3.1.2 for Problem 1 implies the validity of this condition for Problem 2.

Let (9 be an arbitrary point on the boundary 89 and ¢ # 0 an arbitrary
vector tangential to 99 at z(?). We assume that the problem

(3.1.44) L°(z9,¢ + v(z)Dy) u(t) =0  for t >0,
(3.1.45) B° (29, ¢ + v(z™)Dy)u(t)|s=o + C°(29, &) u =0
has only the trivial solution in M™* x C’ and prove that the problem
(3.1.46) L° (9:(0),5' + I/(.’L‘(O))Dt) u(t)=0 fort >0,
(3.1.47) B (2, ¢ +v(z®)Dy)u(t) =0 + C"° (=9, v =0

has only the trivial solution in M* x C”".

We denote by S°(z(®), D,) the ”principal part” of S(x,D,) with coefficients
frozen in z(?), i.e., the elements Sy ,(z(*), D,) of the matrix $°(z(?), D;) contain
only the derivatives of order y}, — ;. Analogously, let S’°(z(9), D), be the ” principal
part” of S’(x, D,) with coefficients frozen in 2(?). From the invertibility of S(z, D,)
and S’(z, D) and from the conditions (3.1.36), (3.1.37) it follows that S°(z(®),¢’)
and S'°(z(?), ¢') are invertible matrices. Furthermore, (3.1.38) yields

B°(r(0),§’ + V(z(o)) Dt)> _ B'°(a:(0),£' + I/(.’E(O))Dt)

(3'1'48) SO(I(O)vfl) ’ < Bo(x(o), &+ V(J:(O))Dt) - (Blo(x(O)’ £+ l/(.’L‘(O))Dt))
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and
oz en. [ C°E@D€) 0
(3.1.49) 5%z, €) ( 0 PR
_( ¢y o (2, ¢’
_< 0 Tg—m—y ST,

Let (u,v) € Mt (n) x C’" be a solution of problem (3.1.46), (3.1.47). We set
v; = =B}, (29, & + v(z D) Dy)u(t)|i=o
forj=J+1,...,d—m and
Uy v1
u = : =5z ¢)t.
Ud—m Vd—m
Then (3.1.47) yields

(B/O(.’L‘(O),£I + V(:E(O))Dt)u> N ( Clo(x(O),gl) 0

10 (,.(0) ¢/ I
B (z(0,¢ 4+ v(z(®)D,)u )5 (™, §)u' =0

0 Iy

for t = 0. Multiplying this equation by S°(z(®),¢)~! and using (3.1.48), (3.1.49),
we get

B° (2, ¢ +v(z®)Ds)u(t) |i=0 + C° (2, & )u =0,
® (89, +v(@O)D)u(t) =0 +u; =0, j=J+1,...,d—m,

where u denotes the vector (u1,...,uy). Since problem (3.1.44), (3.1.45) has only
the trivial solution, we can conclude that v =0, u; =0 for j =1,... ,d — m, and,
consequently, v; = 0 for j = 1,...,d — m. Hence, problem (3.1.46), (3.1.47) has
only the trivial solution. This proves that the ellipticity of Problem 1 implies the
ellipticity of Problem 2. m

The validity of condition (3.1.38) implies the following connection between the
solutions of the equivalent Problems 1 and 2: Let h = (h1,... , hm+J) be a vector-
function on 0 and let g = (g1,--- ,9m+7), 9 = (Gm+J+1,--- ,94) be determined

by the relation
g9\ _g1 (b
(Q) =0 (0>

Furthermore, let (u,u) be a solution of Problem 1 and
u' = g' — Bulaq.

We denote by v the vector-function which consists of the first J' components of the
vector

Then (u,v) is a solution of Problem 2.
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3.2. An a priori estimate for the solution

Now we study the operator of the boundary value problem (3.1.1), (3.1.2)
in a domain with smooth boundary. First we extend this operator to Sobolev
spaces of arbitrary integer order. Using the results of the foregoing chapter, we
prove a regularity assertion and an a priori estimates for the solutions of elliptic
problems. Furthermore, we prove that the ellipticity is necessary for the validity of
such estimates.

3.2.1. Sobolev spaces. Let 2 be a bounded domain in R™. We define the
Sobolev space W4 () for arbitrary integer [ > 0 as the set of all functions u € Ly ()
such that all generalized derivatives D%u with |a| < [ are elements of Ly(Q2). The
Sobolev space Wi(Q) is a separable Hilbert space with the norm

(3.2.1) lwllw o) = (/ > IDzu()” dz)

|l <L

Note that the set C§° () of all infinitely differentiable functions in  with compact
support is dense in W}(Q) if the boundary 99 is smooth. Therefore, in this case
the space Wi(£2) can be defined as the closure of C§°(Q) with respect to the norm
(3.2.1).

Furthermore, the space I/f/lz(ﬂ) is defined as the closure of the set C§°(£2) of
all infinitely differentiable functions u having compact support in € with respect
to the norm (3.2.1). By Wi(2)* we denote the dual space to Wi(2) equipped with
the norm

3
(3:2.2) lullwi - = sup {1 (wv)al : v € WHE), [vlwye <1}

Here (-, -)q denotes the extension of the scalar product in Ly (£2) to Wi(Q)* x Wi(Q).
If I > 1 and the boundary 02 is smooth, then the trace of every function
u € W4(Q) on 09 exists. The space of traces of functions from Wi(Q) (I > 1) on

09 is denoted by Wl 1 2(69). The norm in this space is
||UHW1 1/2(50) = inf {"U‘lwl(g) L v € WD vlm u}.

By means of suitable diffeomorphisms, the norm in Wl L 2(89) can be locally
given by the norm in W2l pi,{z(R" 1) (see Section 2.1). We denote the dual space
to Wl 1 2(39) by W. _Hl/ 2(89) and define the norm in this space analogously to
(3.2. 2)

Finally, we define the space Wzlk(ﬂ) for arbitrary integer k, [, k > 0, as follows.
In the case [ > 0 the space Wék(Q) consists of all pairs (u, ¢) such that u € W(Q)
and ¢ = (¢1,...,¢x) is a vector-functions with components ¢; € Wl A 2(89)
satisfying the condition

D,{_lu‘m =¢; for j < min(k,l).

For | < 0 we set

WEE Q) = Wy 1 (Q)* x le 250 .

j=1
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In particular, by this notation, the space W (£2) coincides with W(€2) for nonneg-
ative | and with the space W, '(€)* for [ < 0. In the case [ > k the space WEk(Q)
can be identified with W}(€2). The norm in W3*(Q) is defined in a natural way as

k 1/2
623 1Bl = (Mo + S I g
j=1

where by ||-[[;710 ) we denote the norm in W}(€2) if { > 0 and in Wyt Q)* if I < 0.
Obviously, there are the following imbeddings:
WiHQ) c Wi(Q) for I >0,
W, 00) < w2 (09),
W, @Q) c W),
where in each case the first space is dense in the second one (cf. Lemma 1.3.1).
These imbeddings are continuous and for bounded {2 even compact. From the

density of Wit*(Q) in Wi (Q) for I; > [ it follows that W*(€) is the closure of
the set

{(’U,,Q) € Cgo(ﬁ) X 080(60)k : é = (’U,Iag ,DyulaQ, ey D5_1u|39)}
with respect to the norm (3.2.3).

3.2.2. The operator of the boundary value problem. Let € be a bounded
domain in R™ with smooth boundary 9Q. We consider the boundary value prob-
lem (3.1.1), (3.1.2), where as before, ord By < 2m for k = 1,... ,m + J and the
coefficients of L, By, and Cj ; are assumed to be smooth. In order to simplify the
notation, we set

J m+J
j=1 k=1

Then the operator A : (u,u) — (f,g) of problem (3.1.1), (3.1.2) continuously maps
(3.2.4) WLQ) x WET2(60)

into the space

(3.2.5) wi2m(Q) x wa 2 (09),

where [ is an arbitrary integer not less than 2m.

Extension of the operator A. In the following, we denote by A also the operator
(3.26)  W™(Q) x Wat™2(89) 3 (v, Dulog, u)
— (Lu, Bulog + Cu) € Wi2m(Q) x W, £7%(69), 1> 2m.
Our goal is to extend this operator to the space
(3.2.7) Vi (@) x WitT2(60)

with arbitrary integer I < 2m. We start with the extension of the operator L.
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Let [ be a fixed integer, 0 < [ < 2m. We write the differential operator L in the
form

(3.2.8) L(z,D;)= Y, DgLa(z,Ds),

|| <2m—1
where L, are differential operators of order < I.

LEMMA 3.2.1. Let L be the operator (3.2.8). Then the formula

(3.2.9) / Lu-vdz = ) / Lo(z, Dp)u - D dx
Q

|e|<2m—1
2m l
+ Z D;’,_lu-Pjvda+Z/D,{_1u P jvdo
I=lt150 =15a

is valid for u,v € C§°(Q). Here P; are the same operators as in (3.1.7) and P, ;
are differential operators of order < 2m — j with smooth coefficients. Moreover, the
functional

l
(3.2.10) v— Z/Df;_lu - P jvdo
=150
is continuous on W2™Y(Q) for arbitrary u € W(Q).
Proof: Integrating by parts, we get
2m )

/Lu.ﬁdm = Z /La(m,Dz)u -D2vdz + Z/Df,_lu - P jvdo

5 la|<2m—1 & =150
with certain differential operators P, ; of order < 2m — j. This and (3.1.7) imply

(3.2.11) /u-mdx— Z /La(m,Dz)ng‘vdz
Q

|a|<2m—1 o

l 2m
+ Z/Dz—lu (P, = Pjvdo= > /D,{-lu (P; — P;)vdo.

7=150 I=l+150

The left-hand side of (3.2.11) defines a linear and continuous functional on W4(Q)

for arbitrary fixed v € W2™(Q). Hence the right-hand side is also a continuous

functional on Wi(€2). This is only possible if P, ; = P; for j =1+ 1,...,2m.
Furthermore, the functional

v — z /La(x,Dm)u-ngda:

la]<2m—1 o

is continuous on W3™!(Q) for arbitrary u € Wi(2). By (2.3.20), the same is true
for the functional

2m
v—»/Lu-?dm—- Z /D,{'_lu-?j_vda.
Q

J=l+150



3.2. AN A PRIORI ESTIMATE FOR THE SOLUTION 75

Consequently, the functional (3.2.10) is also continuous on W2™~!(Q) for arbitrary
u € W(Q2). The lemma is proved. m

Using formula (3.1.7) and Lemma 3.2.1, we can prove the following lemma.

LEMMA 3.2.2. The operator

(3.2.12) W3™*™(Q) 3 (u, Dulan) — Lu € Ly(9)
can be uniquely extended to a continuous operator
(3.2.13) V2™ () 3 (u,¢) — f € Wi™HQ)*, 1< 2m.

The functional f = L(u, ¢) in (3.2.13) is given by

2m

(3214) (fa U)Q = (’U,, L+U)Q + Z (¢j’ Pjv) aq> Y € ng—l(ﬂ)’
j=1
if 1 <0 and by
2m
(3215) (fiv)e = Y, Lo(z,Dy)u-Dgvdz + Y (45, Pv)ac
|a|<2m~1 o j=l+1

!
+ Z (DI, P jv),q, VE wim=lQ),
j=1

if0 <l <2m.

Here (-,-)q denotes the extension of the scalar product in Lo(Q2) to each of
the products W2™~1(Q)* x W2mHQ) and W5 H(Q)* x W5 {(Q), while (-, )aq is the
extension of the scalar product in Lo (82) to WL 2(50) x W, 712 (60).

Proof: Obviously the mapping (3.2.13), where f is defined by (3.2.14) and

3.2.15), is continuous. If (u,®) € W2"™?™(f2), then by (3.1.7) and Lemma 3.2.1,
[ 2

we have f = Lu. Thus, the operator (3.2.13) is an extension of the operator (3.2.12).

The uniqueness of the extension follows from the density of W2™2™(Q) in W™ (Q)

forl<2m.m

Furthermore, by means of (3.1.6), we can extend the operator

W™(Q) 3 (u, Dulog) — Bulag € Wy £ 2(89), 1> 2m,

to a continuous operator

(3.2.16) WEA™(Q) 5 (u,0) —» g € Wy 27 12(69), 1< 2m.
The vector-function g in (3.2.16) is given by the equality

de
(3.2.17) g=Bu¢) € Q ¢

Thus, we obtain the following theorem.

THEOREM 3.2.1. The operator (8.2.6) can be uniquely extended to a linear and
continuous operator

(3.2.18)
Wzl,zm(ﬂ) % W21+z—1/2(59) 5 (U,Q’ u) — (f,9) € ng_l(ﬂ)* X Wé_&—l/z(aﬂ)
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with | < 2m. This extension is given by
f=L(u,¢), g=Q¢+Cu,
where L is the operator (3.2.13) and Q is determined by (3.1.6).

REMARK 3.2.1. By Theorem 3.2.1, A is a continuous operator
W™ (@) x W2 (90) — Wi2m0Q) x w, 472 (a0)

for arbitrary integer .
In the case [ < 0 the functional f and the vector-function g in (3.2.18) satisfy
the equality

(3.2.19) (f, U)Q + (g,v)ag = (u Lt 'U)Q + (¢ Pv|ag + Q+ )aQ + (u ct ’U)ag,

where v is an arbitrary function from WZ™ '(Q) and v € W, St/ (692). Here

(+,)an denotes the scalar product in each of the spaces Ly(89)7, L2(82)?™ and
Ly (02)™+7 . Therefore, A is adjoint to the operator

3.2.20) W2nLQ) x W, TETV2(00) 5 (v,0) = (Lv, Polsa + QTv, CHy
2

e Wy H(Q) x (HW'H'J 1/2(6Q)> x Wy "I (90)
j=1
of the formally adjoint problem if [ < 0.
Extension of the Green formula to distribution spaces. The Green formula
(3.1.9) is valid, for example, for functions u,v € W™ (Q) and vector-functions u,
v from corresponding Sobolev spaces on the boundary. However, the extension of

the operators L, LT, B, and P to Sobolev spaces of arbitrary order allows us to
extend this formula to functions in Sobolev spaces of lower orders.

THEOREM 3.2.2. Let | be an arbitrary integer number. Then for all (u, ¢, u) €
Wi (Q) x WHTV2(00) and (v,9,0) € WEmHA™Q) x W, T2 (00) the
Green formula
(3.2.21) (L(u, 9),v) g + (B(u, 9) + Cu, v) 5

= (u, LY (0,9))q + (&, P(v,%) + Q1) 5 + (2, CT0) o,

is valid.
Proof: Since B(u, ¢) = Q¢ and P(v,v) = T4, formula (3.2.21) is equivalent to
(3222) (L(U,Q),’U)Q = (U, L+(U’%))Q + (9’ Tﬂ)aﬂ .

For (u,9) € Wé’zm(ﬂ), (v,9) € W;m_l‘zm(ﬂ), 1 <0, we have Ty = Pv|sq, and
(3.2.22) follows from Lemma 3.2.2. Hence the functional

(3.2.23) W™ HP™(Q) 3 (v,9) — (L(w, 9),v), — (u, LT (v,¥)), — (&, T¥) 5,

is equal to zero for fixed (u,9) € WiP™(Q), I, > 1, | < 0. Since this func-
tional is continuous on W2™ 2™ (Q) and WZ™~"*™(Q) is dense in W™~ '**™(Q),
we conclude that the functional (3.2.23) vanishes on W2 2™ (Q) for arbitrary
(u,9) € W™ (Q). This proves the validity of (3.2.22) for (u,¢) € Wi (Q),
(v,9) € Wy m=b2™ () with arbitrary integer /. m
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3.2.3. A regularity assertion for the solutions. In Section 2.3.5 we have
formulated a regularity assertion for solutions of elliptic boundary value problems
in the half-space. Now we extend this result to elliptic boundary value problems in
bounded domains.

First note that, by means of Lemma 2.3.2, the following assertion holds.

LEMMA 3.2.3. Let ¢, n be functions from C$*(Q) such that n = 1 in a neigh-
bourhood of supp (. If L is elliptic in €, then for all (u, ) € Wzl’zm(ﬂ) the inequality

2m
(3.2.24) Z ”C¢j”WZI—J+1/2(aQ) <c (”n“”v”vzl,o(g) + lInL(w, @”WQZ—M'O(Q))
7j=1

is satisfied with a constant c independent of (u, ¢).

Naturally, the functions ¢,  can be identically equal to one in . This means
that the inequality (3.2.24) is also valid if we omit the factors ¢ and 7.

THEOREM 3.2.3. Suppose that the boundary value problem (3.1.1), (8.1.2) is
elliptic. If (u,¢,u) € WE™(Q) x WZZ+I'1/2(BQ) is a solution of the equation
Al(u, ¢,u) = (f,g) with

(3.2.25) (f,g) € Wm0y x w, 1% (a0).
Then (u, ¢, u) is an element of the space
3.2.26 W™ () x W2 (60),

2 2

and the following inequality is valid with a constant c independent of (u, $,u) :

(3:2:27) (s sl < ¢ (1 lig-om o000 + Igllyi-svs/2 50 + 10,011 ).
Here || - ||; denotes the norm in (3.2.7).

Proof: Let {U, ;]Y=1 be a sufficiently fine covering of O with open sets Uy, and
let {¢,})_; be a partition of unity subordinate to this covering which satisfies the
conditions in the proof of Lemma 3.2.2.

We prove first that the vectors

def

(f(“)ag(p‘)) = 'AC#(U’?’ Q) - CM'A(U” ?7 u)v
p=1,...,N, belong to the space (3.2.25) for arbitrary (u,¢,u) from the space

(3.2.7) and that the norm of (f(“),g(“)) in (3.2.25) is not greater than c||(u, ¢, )|,
where c is a constant independent of (u,¢,u). For [ > 2m this assertion follows
immediately from the Leibniz formula

D2y =Y () (D2¢) D',
o'<a

In the case [ < 0 the functional (f (“),g(“)) is defined by the equality

(32.28) (f®,v)a+ (g%, v)en = (u, CLTv—LT((w))q
(Q’ Z'LL(PU + Q+lf_) - P(Euv) - Q+(Zyy) )BQ ’
u,(,

+
+( CTu = C*((,u0) ) 5
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Using the Leibniz formula, we get the inequality

(%), 0)a + (g, w)oal < ¢l & 0)ls (Iollyzmi-s gy + il ramsss oy )

for the case [ < 0. If 0 < I < 2m, then this inequality can be proved analogously by
means of the local representation (2.3.23) for the operator L.
Consequently, the term

(3.2.29) Ay (u, 8,u) = Culfr9) + (F*), g
belongs to the space (3.2.25). Let the support of ¢, be contained in the interior of
Q. Then ¢,¢ =0, (,u = 0, and (3.2.29) yields
L (Guu) = Guf + F®.

If we extend the functions (,u, f (1) and the coefficients of L outside the support of
¢, to periodic functions, we can consider this equation as an elliptic equation in R™.
Then Theorem 2.1.2 yields (,u € 2“;;(]1{”) From this it follows that (,(u, ¢, )
belongs to (3.2.26).

If the support of ¢, is contained in a sufficiently small neighbourhood of a point
z(© € 9Q, then we can conclude this assertion in the same way from Theorem 2.3.5.
Furthermore, an estimate analogous to (3 2.27) holds. Hence

(u, ¢, u) = Zcﬂ u, ¢, )

is an element of the space (3.2.26) and satlsﬁes the estimate (3.2.27). m

REMARK 3.2.2. By Lemma 3.2.3, the term [|(u, ¢, u)||; on the right of (3.2.27)
can be replaced by
“u”VVé’O(Q) + “@”W;"E—lﬂ(ag) .
A local estimate for the solutions. As a consequence of Theorem 3.2.3, the

following local regularity assertion holds.

LEMMA 3.2.4. Let ¢, n be C®-functions on Q satisfying the equations (n = ¢
and DiClaa = Dinlsq = 0 for j = 1,...,2m — 1. We assume that the boundary
value problem (8.1.1), (5.1.2) is elliptic. If (u, p,u) € We?™(Q) x WiT12(60)
is a solution of problem (8.1.1), (3.1.2), where nf € Wi >™%(Q) and ng €

Wzl ﬂ+1/2(89), then ((u, ¢,u) is an element of the space (3.2.26) and satisfies the

estimate
¢ 8, < € (I sy + 16ally svrr2 gy + I 8,011 )
where || - |1, || - lli+1 denote the norms in the spaces (3.2.7), (3.2.26), respectively.

Proof: Analogously to the proof of Theorem 3.2.3, it can be shown that the
norm of

(F0,gM) < A¢(u, ¢, w) — CAw, 8,0)
in the space (3.2.25) is not greater than c|[n(u, ¢,u)||; for arbitrary (u,¢,u) from
the space (3.2.7). Since

AC(u, 6,0) = ((f,9) + (fF P, gM),
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now the assertion of the lemma follows immediately from Theorem 3.2.3. m

COROLLARY 3.2.1. Let ¢, n be C*®-functions on Q such thatn = 1 in a neigh-
bourhood of supp €. If (u,u) € WE™(Q) ><I/I/'22m+1_1/2 (09) is a solution of the elliptic
boundary value problem (3.1.1), (3.1.2) and n(f, g) belongs to the space (3.2.5) with
I > 2m, then ((u,u) is an element of the space @24} and the inequality

(3'2'30) “CUHWZL(Q) + “CQ”Wé*I*l/?(aQ)

< ¢ (Infllyz-may + gl ioi-o72 gy + 100 0l o xacom
is satisfied with a constant ¢ independent of (u,u).

Proof: If additionally to our assumptions on ¢ and 7 the condition
Di¢laa = Dinlaa =0 for j=1,...,2m -1
is satisfied, then the assertion of the corollary follows by induction from Lemma
3.2.3 and Lemma 3.2.4. Now let ¢ and n be arbitrary C°°-functions such that
n = 1 in a neighbourhood of supp ¢. Then there exist smooth functions ¢V, n™
such that () = 1 in a neighbourhood of supp ¢V, ¢¢M = ¢, ™ = nM) | and
Di¢W)sq = DinMW|sq = 0 for j = 1,...,2m. Hence the inequality (3.2.30) with
¢ 7 instead of ¢, n is valid. This implies (3.2.30) with our given functions ¢, 7. m

REMARK 3.2.3. The assertions of Lemma 3.2.4 and Corollary 3.2.1 are also
true if Q is an unbounded domain and the function ¢ has compact support.

Necessity of the ellipticity for the a priori estimate. In Sections 2.1 and 2.3 we
have shown that the ellipticity is a necessary condition for a priori estimates of the
form (3.2.30) in R™ and in R?}. We prove the same result for problems in a smooth
bounded domain.

THEOREM 3.2.4. Suppose that the estimate
(3:2:31) (s &) gy + [lygoz-272 oy < ¢ (10,8 g2y
+”B(u’ 9) + Cg||Wé_ﬁ_1/2(BQ) + ||(uaf)“W£—1»2m(Q) + ”yl|wzl+l—3/2(an)>

is satisfied for all (u, ¢) € Wy*™(Q), u € WQHZ_I/Z((?Q). Then the boundary value
problem (8.1.1), (8.1.2) is elliptic.

Proof: 1) First we show that L is elliptic in €. Let (%) be an arbitrary interior
point of € and let u € Wé’o(ﬂ) be a function with support in a sufficiently small
neighbourhood U C 2 of this point. We extend u and the coefficients of L outside
U to periodic functions on R™. Then (3.2.31) yields

lullws . ey < € (1 Eullyg=2m ooy + Nllis o))

and from Lemma 2.1.2 it follows that L(z(®), D,) is elliptic.

2) Now let z(9) be an arbitrary point on the boundary Q. With no loss of gen-
erality, we may assume that 02 coincides with the hyper-plane x,, = 0 in a neigh-
bourhood of (9, Furthermore, let u, u be functions with support in a sufficiently
small neighbourhood of z(?). Extending (u, ¢), u, and the coefficients of L, B, and
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C outside this neighbourhood to periodic functions with respect to z1,... ,2,—_1,
we get the estimate

It Dt ey + Ilhrie 22 oy < € (1200 8-z

B, 9) + Culy -t/ ) + 10 D)l 1o ) + Ilhysesro oy )
Hence by Lemma 2.3.3, the problem
Lz, D)u=f forz, >0,
B(a:(o), D)ulg, =0 + C’(x(o), Dy)u=g

is elliptic. This proves the ellipticity of the boundary value problem (3.1.1), (3.1.2).
=

3.3. The adjoint operator

In the previous section we studied the operator A of an elliptic boundary value
problem mapping a Cartesian product of Sobolev spaces into other Sobolev spaces.
Now we explore the adjoint operator A* acting in the corresponding dual spaces. In
particular, we are interested in the relations between this operator and the operator
A7 of the formally adjoint boundary value problem and in regularity assertions for
solutions of the adjoint equation.

3.3.1. Relations between the adjoint operator and the operator of the
formally adjoint problem. We suppose again that the orders of the differential
operators By, are less than 2m. Then the operator A of the boundary value problem
(3.1.1), (3.1.2) continuously maps (3.2.4) into (3.2.5) for arbitrary integer [ > 2m.
Hence the adjoint operator A* : (v,v) — (F,h) of A is a linear and continuous
mapping from the dual space of (3.2.5) into the dual space of (3.2.4), i.e.,

(33.1) A" W) x Wy TET 2 00) — W) x Wy Y2 (90).
The functional (F,h) = A*(v,v) is defined by the equality
(3.3.2) (u, F)a + (4, h)ao = (Lu,v)a + (Bulan + Cu, v)an,

where (u, u) is an arbitrary element of the space (3.2.4).

Now we consider the operator A* of the formally adjoint problem (3.1.10),
(3.1.11). By Theorem 3.2.1, this operator can be extended to a continuous operator
from

m~+J
(3.3.3) vim i) < T wy et e0),
k=1
[ <0, into
2m J
(3.3.4) Wy o) x T ws 77712 00) < [T ws '~ (09).
Jj=1 Jj=1

According to (3.1.7), (3.1.8), the mapping

Wy THQ) 3 () = f = LY (v, 9) € WH(Q)'
is defined for [ > 2m by the equality

(u, fla = (Lu,v)q — (T+Du, ﬁ)aa’ u € Wé(ﬂ),
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while P(v,v) = T%. Hence the operator
Ty - (fg.h) = (L (v,9), Ty + QTv, CTo)
which maps (3.3.3) into (3.3.4) is defined for I > 2m by the equality
(3.3.5) (u, fa + (w, g)oa + (u, h)an
= (Lu,v)q + (w — Dulaq, TY) 5 + (Qu + Cu, v)aq,

where (u,w,u) is an arbitrary element of
(3.3.6) ) X HW’ TH2(60) x H Wi 260 .

Comparing formulas (3.3.2) and (3.3.5), we obtain the following relation be-
tween the operators A* and A" (cf. Theorem 1.4.1).

LEmMMA 3.3.1. Let (f,g,h) be an arbitrary element of the space (3.3.4), where
| > 2m. Furthermore, let the functional F € W}(Q)* be defined by

(3.3.7) (u, F)a = (u, fla + (Duloa, 9)aa, u€ Wi(Q).
Then (v,%,v) is a solution of the equation

(3.3.8) AY (v,9,0) = (f,9,h)

in the space (3.3.3) if and only if

(3.3.9) A* (v,0) = (F,h)

and Ty +Qtu=g

Proof: 1) Let (v,1,v) be a solution of the equation (3.3.8) in the space (3.3.3).
Then in particular, g = P(v,%) + QTv = T% + QTv. Furthermore, inserting w =
Dulsq into (3.3.5), we obtain

(3.3.10) (w, fla + (Du, gloa + (u, h)oa = (Lu,v)a + (Bu + Cu,v)sq
for arbitrary u € W(Q), u € W.T271/2(9). Hence the functionals F and h satisfy
(3.3.3), i.e., (v,v) is a solution of the equation (3.3.9).

2) Suppose that (v,v) € Wi2™(Q)* x W, H-#H/Q(OQ) is a solution of equation

(3.3.9) with a functional F' of the form (3.3.7) and 4 € [IW2m™9%12(5Q) is a
vector-function satisfying the equation T + Q*v = g. Then (3.3.10) is satisfied for

all w € W(Q), u € WET="1/%(80). This implies C*v = h and
(u, fla + (Du, 9)sa = (Lu,v)q + (Bu,v)sq

for all u € W§(Q). Inserting g = T4 + QT v into the last equality and using the
representation (3.1.6) for the vector Bu, we get

(uv f)ﬂ = (Lua ’U)Q - (DU’ Tﬁ)aﬂ y uE Wé(Q)’

ie., f=L*%(v,9). Consequently, (v,%,v) is a solution of the equation (3.3.8). The
proof is complete. m
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Motivated by the representation (3.3.7) for the functional F' in Lemma 3.3.1,
we introduce the following subspace of W§(Q)*. For integer £ > 0 and | > —k let
Dlz’k(ﬂ) be the set of all functionals F € W§(Q)* which have the form

kol

(3.3.11) (u, F)a = (u, f)a Z I ulon ) g € WE(Q),
where g; € W20, f € Wé’O(Q), ie., feWLQ)ifl>0and f € W; Q)
if I <0.

REMARK 3.3.1. If [ is a negative integer, then the functional
—1
u— Z(D,’,‘lu|39 » 9j)oq
j=1

belongs to W, (Q)* for given g; € Wlﬂ 1 2(69). Hence the space D5*(Q) can be
defined as the set of all functionals F' € W¥(Q)* which have the form
k
(U, F)ﬂ = (ua f)ﬂ + Z (D£_1u|39 5 g])BQ , UE WQIC(Q)a
j=—lt1

where f € Wy H(Q)*, g; € Wl+] 1 2((99). This representation is unique.

The norm of the functional F' in Dé’k(ﬂ) is defined as the infimum of the sum
k
”f”[/f/é'o(ﬂ) + Z ”gj“WZH'J'—l/Z(BQ) )
Jj=1
where f and g; satisfy (3.3.11).
In the case | < —k, k > 0 we set D5*(€) = W; 4 (Q2)*. Then, in particular, we

have
L0y _ 0oy ) W) if 1>0,
Dy () = W, (Q)‘{ Wyl Q) i 1<0.

It can be easily seen that the space DL*(Q) is continuously imbedded into D5* ()
if I > I. Furthermore, DY*(2) is dense in DY*(Q) if Iy > I.

Since Wi=2m(Q)* = D_l+2m’O(Q) and WA(Q)* = D;“?™(Q) for | > 2m, the
adjoint operator A* continuously maps the space

(3.3.12) Dy 2m0) s Wy T2 (a0
for [ > 2m into the space
(3.3.13) DFHP™ () x Wy T2 (o).

From Theorem 3.2.1 and Lemma 3.3.1 it follows that the restriction of A* to the
space

(3.3.14) Wy 2m(Q) x W, o0)

with | < 2m continuously maps (3.3.14) into (3.3.13). Consequently, the adjoint
operator A* realizes a linear and continuous mapping

D2—l+2m,0(Q) x Wz—l+ﬂ+1/2(80> N Dz—l,Qm(Q) % Wz—l—1+1/2(aﬂ)

for arbitrary integer I.

l+p+1/2 (
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3.3.2. A regularity assertion for the solution of the adjoint problem.
Using the relation between the adjoint operator 4* and the formally adjoint oper-
ator A1 given in Lemma 3.3.1 and the regularity assertion for solutions of elliptic
boundary value problems in Section 3.2, we obtain the following assertion for the
solution of the adjoint problem.

THEOREM 3.3.1. Suppose that the boundary value problem (3.1.1), (3.1.2) is
elliptic. If (v,u) is a solution of the adjoint equation A* (v,v) = (F,h) in the space
(8.8.12) and

(F, h) € D2—l+1,2m(Q) x W2—1—1+3/2(6Q)7

then (v,v) is an element of the space

(3.3.15) Dm0y s Wy T2 (50
and satisfies the estimate
(38316) 1,01 < e (IFllpzernam gy + Ihlly—rzsar2gag) + 1@, 211,

where || - ||; and || - ||i+1 denote the norms in the spaces (3.3.12) and (3.3.15),
respectively.

Proof: By the assumptions of the lemma, the functional F' has the form (3.3.7),
where f € W, "%(Q) and 9; € W_l+’+l/2(8ﬂ). We choose f and g; such that

2m

”f”v'(/z_l"'lvo(ﬂ) + z; ”gj”WZ—H'H'l/?(aQ) <2 ”F”D;“*’l’zm(ﬂ) .
J:
Since L is elliptic, the operator T is an isomorphism

H W—-l+2m—j+1/2 (69Q) — H Wy 12(50)
j=1 J=1
(see Remark 3.1.2). Hence there exists a vector-function i € [ W, Ham—j+1/2 (082)

satisfying the equation T + Qtv = g, where g denotes the vector (g1, ... ,gam)-
From Lemma 3.3.1 it follows that (v,%,v) is a solution of the equation (3.3.8).

q 2m+M+1/2(aQ) with q=
Wz—l+1+2m,2m(ﬂ)

Here (v,%,v) is an element of the space W. WL (Q) x W.

min(0, 2m — ). Applying Theorem 3.2.3, we obtain (v,ﬁ) €

vE W2_l+”+3/2(89) and

”(U’Q)HWQ—HHW-M(Q) + ||P_||W2—l+ﬁ+3/2(ag) <c (”f”WZ_H‘l’O(Q)
2m

+Z 195 41725y + 10 D)y + el ot g )

Since the norm of ¢ can be estimated by the norms of g and v, this implies (3.3.16). m

Note that the regularity assertion of Theorem 3.3.1 is true, in particular, for
F e D7) (e, F e WyHQ) if 1 < 1, F € Wi™H(Q)* if [ > 1), since this
space is contained in D_H'1 2m(ﬂ). Furthermore, as a consequence of Theorem 3.3.1
and Lemma 3.3.1, we obtaln the following assertion.
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COROLLARY 3.3.1. Suppose that the boundary value problem (3.1.1), (3.1.2)

is elliptic. If (v,v) € WF(Q)* x W;k_2m+ﬁ+1/2(3ﬂ), k > 0, is a solution of the
equation A*(v,v) = (F,h), where

(3.3.17) (F,h) € DL 2m2m(Q) x Wi T/ 2(90),

l > —k, then

(3.3.18) (v,0) € DLO(Q) x Wi T2 90,

Moreover, in the case | > 2m, the vector-function (v,v) is a solution of the for-
mally adjoint problem (3.1.10), (3.1.11), where the function f € WL=2™(Q) and
the vector-function

g="(91,--- ,g2m) € [[ W22 (002)

are determined by the equality

(u) F)Q = (U, f)Q + (’Z)u|(9Q »Q)an’ u€ WZQm(Q)

3.4. Solvability of elliptic boundary value problems in smooth domains

Using the results of Sections 3.2 and 3.3, we prove now that the operator of an
elliptic boundary value problem is Fredholm. Furthermore, we state conditions for
the solvability of elliptic boundary value problems. Analogous assertions hold for
the adjoint operator.

3.4.1. The Fredholm property. We start with an abstract definition of the
Fredholm property for linear and continuous operators.

DEFINITION 3.4.1. The linear and continuous operator A from the Banach
space X into the Banach space ) is said to be a Fredholm operator, if
(i) dim ker A < 0o, R(A) is closed.
(i) dimcoker A = dim (Y/R(A)) < o0.
Here ker A denotes the kernel and R(.A) denotes the range of the operator .A. The
index of the operator A is defined as the difference dim ker A — dim coker .A.

In connection with the notion of the Fredholm operator the following lemma
(see J. Peetre [192]) plays an important role.

LEMMA 3.4.1. Let X, Y, and Z be Banach spaces, where X is compactly imbed-
ded into Z. Furthermore, let A be a linear and continuous operator from X into Y.
Then the following assertions are equivalent:

1) dim ker A < 0o and R(A) is closed in Y.
2) There exists a constant ¢ > 0 such that for each x € X the following estimate
is satisfied:

Izl < c(lAzlly + [lzll2) -
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3.4.2. The Fredholm property for the operator of an elliptic bound-
ary value problem. As in the previous sections, we assume that the orders of the
operators By are less than 2m. From Theorem 3.2.4 and Lemma 3.4.1 it follows
that the ellipticity of the boundary value problem (3.1.1), (3.1.2) is necessary for
the Fredholm property of the operator

B41) A WEEQ) x W2 (00) - WEP0Q) x W, 22 (00)

of the boundary value problem (3.1.1), (3.1.2). We prove that the ellipticity is
also sufficient for the Fredholm property. In the following, we denote the operator
(3.4.1) by A;. In the case [ > 2m the operator A; can be identified with the operator

(3.4.2) WHQ) x Wit™?(00) 3 (w,u) — (Lu, Bulpq + Cu)
e Wi (9) x wi 2% 00).

Furthermore, let

AF TR Q) x Wy TTER2 (a0

2m
- ~2z—2m,o(Q) % (H W2l—2m+j—1/2(89)) % W2l—2m—1+1/2(3m
j=1
be the operator of the formally adjoint problem (3.1.10), (3.1.11).

For | > 2m we denote the adjoint operator to the operator (3.4.2) by A},
while for ! < 2m the operator A} is defined as the restriction of 43, to the space
Dm0y x W, Y2 (600,

We introduce the following three sets. By A we denote the set of all (u, ¢, u) €
C>®(Q) x C>(90)?™ x C°(89)7 such that (u,u) is a solution of the homogeneous
boundary value problem (3.1.1), (3.1.2) and ¢ = Dulyq. Analogously, N'* is the set
of all (v,9,v) € C®(Q) x C=(8N)?™ x C*>(09Q)™F such that (v,2) is a solution
of the homogeneous formally adjoint problem (3.1.10), (3.1.11) and % = Duvlsq.
Finally, we put N* = {(v,v) : (v,Dv|sq,v) E NT}.

Using Lemma 3.4.1 and the regularity assertion for the solutions of elliptic
boundary value problems in Theorem 3.2.3, we get the following lemma.

LEMMA 3.4.2. Suppose that the boundary value problem (8.1.1), (3.1.2) is el-
liptic. Then the kernels of the operators A, -Az+’ and A} are independent of | and
contain only C*°-functions. More precisely, we have

ker A, =N, ker A =Nt and kerA; = N™.

Furthermore, the spaces N, N*, N* have finite dimensions and the ranges of the
operators Ay, .Al+ , Af are closed.

Proof: Since A1 is the restriction of A;, we have ker A; 1 C ker A; . However,
by Theorem 3.2.3, every (u, ¢, u) € ker A; belongs also to the kernel of 4;11. Hence
the kernel of A; is independent of . Since the intersection of all Sobolev spaces in
Q and 0N coincides with C*°(2) and C>(5), respectively, we obtain ker 4; = N.
Furthermore, from (3.2.27) and from the compactness of the imbeddings Wit (Q) C
Wi(S), WQIH/Z(BQ) C Wé_l/z(c‘?ﬂ) it follows that R(A;) is closed and dim N < oo.

Analogously, the assertions concerning the operators Al+ and Aj can be proved
by means of Theorem 3.1.2, Theorem 3.3.1 and Corollary 3.3.1. m
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THEOREM 3.4.1. Suppose that the boundary value problem (3.1.1), (3.1.2) is
elliptic. Then the operator A, is Fredholm for arbitrary integer . The kernel of A,
is the space N defined above and the range of A; consists of all elements (f,g) €

Wzl_2m’0((l) X Wzl_ﬁ_lm(aﬂ) such that
(3.4.3) (f,v)a+(g2)oa =0
for each (v,v) € N*.

Proof: Condition (i) in the definition of the Fredholm property has been already
verified in Lemma 3.4.1. It remains to show that the cokernel of A; has finite
dimension.

First let [ be not greater than zero. Then .4; is adjoint to the operator (3.2.20)
(see Remark 3.2.1). Since R(A;) is closed, the equation

(3.4.4) Aj (u, ¢,u) = (f, g)

is solvable in W™ () x WzH-I—l/ ?(8) if and only if the equality (3.4.3) is satisfied
for all elements (v,v) of the kernel of the operator (3.2.20). By Lemma 3.4.2, the
kernel of the operator (3.2.20) coincides with A*. Thus, we get the condition of the
theorem for the solvability of the equation (3.4.4).

We assume now that [ > 0. Obviously,

R(A) € R(Ao) N (W;-vao(n) x Wy e 2(39)).

Let (f,g) be an arbitrary element of R(Ag) N (W 1=2m0 () x Wzl_ﬁ_l/Q(@Q)). Then
there exists an element (u, ¢,u) € W™ () x Wzl_l/2 (0Q) such that Ag (u, ¢, u) =
(f;g)- From the regularity assertion in Theorem 3.2.3 it follows that (u, ¢, u) is an
element of the space Wzl’zm(ﬂ) X W21+I_1/ 2(8(‘2). Consequently, (f,g) belongs to
the range of the operator A;. Therefore, R(A;) is the intersection of R(Ag) with
the space Wzl_Qm’O(Q) X W;_E‘I/Q(aﬂ) and, by the first part of the proof, we get
the assertion of the theorem. m

COROLLARY 3.4.1. Suppose that the boundary value problem (8.1.1), (3.1.2)
1s elliptic. Then the operator Al+ is Fredholm. The kernel of .Al+ is the set Nt and
the range of A" is the set of all

2m
(345) (f, g’ ﬁ) c Wzl—2m,0(ﬂ) x ( H W2l—2m+j—1/2 (69)) % W2l—2m—1+1/2 (89)
7j=1
satisfying the condition
(f,u)a + (g, P)aa + (h,u)oa =0
for all (u, d,u) € N.

Proof: The first part of the corollary is an immediate consequence of Theorems
3.1.2 and 3.4.1. We show the last assertion. By Theorem 3.4.1, the range of A;"
consists of all (f,g,h) in the space of (3.4.5) such that

(f’ U)Q + (27 M)aﬂ + (ﬁ) Q)BQ =0

for all solutions of the homogeneous problem (3.1.40), (3.1.41) which is formally
adjoint to the problem (3.1.10), (3.1.11). However, the set of the solutions of the
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homogeneous problem (3.1.40), (3.1.41) coincides with N, since the operator T is
invertible (see Remark 3.1.2). This proves the last assertion of the corollary. m

Furthermore, the following assertion holds.

THEOREM 3.4.2. If the boundary value problem (8.1.1), (38.1.2) is elliptic, then
the operator

Ar o DIHEOQ) Wy Y2 90) DRI ) x Wy T2 (60)
is Fredholm for arbitrary integer I. The kernel of A; is the space N* and the range
of A} consists of all (F,h) € D;mm(Q) X Wz_l_IH/Q(@Q) satisfying the condition
(u, F)a + (4, h)ag = 0
for all solutions (u,u) € C®(Q) x C®(0Q)’ of the homogeneous problem (3.1.1),
(3.1.2).

Proof: For | > 2m the assertions of the theorem follow from Theorem 3.4.1.
Furthermore, according to Lemma 3.4.2, for arbitrary integer [ the kernel of A
coincides with A* and the range of A is closed. From Theorem 3.3.1 we conclude
that

R(AT) = R(A3,,) N (D3 H2m0(0) < wy 272 00 )

for I < 2m. This proves the theorem for [ < 2m. m

A solvability condition for classical boundary value problems. Now we consider
the classical boundary value problem

(3.4.6) Lu=f in Bru=gr ondQ, k=1,...,m.
Suppose that this boundary value problem is elliptic,
ordB, = pur <2m for k=1,... ,m,

and the system of the operators By is normal on 9f). Then the classical Green
formula (3.1.17)

m m
/Lu~6dx+Z/Bku-B§C+mvda= /u-mdx+Z/Bk+mu-mda
Q k=150 o) k=150
is satisfied for all u,v € W2™(Q)
Using the relations between the formally adjoint problems (3.1.18), (3.1.19)
and (3.1.20), (3.1.21) given in Lemma 3.1.1, we get the following description of the
range of the operator

(347)  WX(Q) 3 u — (Lu, Busa) € Wi2m(Q) x W, “ 2(60), 1> 2m.

COROLLARY 3.4.2. Suppose that the boundary value problem (8.4.6) is elliptic,
ord By, = pur < 2m and the system of the operators Bi,...,B,, is normal on
0N). Then the kernel of the operator (3.4.7) is a finite-dimensional subspace of
C>(Q), while the range of this operator consists of all elements (f, g) € W™ (Q) x

WQZ_E-I/Q(BQ) satisfying the condition

(3.4.8) (fiv)a+ Y (9, Bjyrv)oa =0
k=1
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for all solutions v € C* () of the homogeneous formally adjoint problem
Ltv=0 inQ, Blv=0 ondQ, k=1,...,m.
Analogously, the formally adjoint problem
Ltv=f inQ, Biv=gr ondQ, k=1,...,m,

with any given f € WL2™(Q), g, € WL 2™ Hr st 290 i = ord By g, is
solvable in WL(Q) if and only if

(3.4.9) (f,wa+ > (9k, Bmixwon =0
k=1

for all solutions u of the homogeneous boundary value problem (3.4.6).

Proof: The assertion concerning the kernel of the operator (3.4.7) follows from
Lemma 3.4.2. Furthermore, by Theorem 3.4.1, the range of this operator consists

of all (f,g) € Wi™2™(Q) x Wzl—ﬂ_lﬂ(aﬂ) satisfying the condition
(f,v)a+(g,v)o0 =0

for all solutions (v,v) of the homogeneous formally adjoint problem

(3.4.10) Ltv=0 inQ, Pv+Q"u=0 ondQ.

Due to Lemma 3.1.1, (v,v) is a solution of problem (3.4.10) if and only if v satisfies
the equations LTv = 0in Q, Bjv = 0 on 9, and the components v, of the vector-
function v coincide with the traces of B}, ,v on 0f). This proves the validity of the
condition (3.4.8). Analogously, we get (3.4.9). m

3.4.3. Existence of left and right regularizers. Another method to es-
tablish the Fredholm property for the operator A; consists in the construction of
left and right regularizers.

DEFINITION 3.4.2. Let A be a linear and continuous operator from the Banach
space X into the Banach space ). A linear and continuous operator R; : Y — X
is said to be a left regularizer for the operator A if R; A — I is compact in X.
Analogously, a linear and continuous operator R, : Y — X is said to be a right
reqularizer for the operator A if AR, — I is compact in ). Here I denotes the
identity operator in X and ), respectively.

It is known (see e.g. [256, Ch.2, §12]) that the existence of left and right
regularizers is necessary and sufficient for the Fredholm property of the operator
A. In the following let

X = W2 Q) x WHTTV290) and Y = WEEmO(Q) x w2 (09).

THEOREM 3.4.3. Suppose that the boundary value problem (8.1.1), (3.1.2) is
elliptic. Then there exist both left and right reqularizers for the operator A,.

Proof: Existence of a right regularizer. Let {U,}1<,<n be a sufficiently fine
covering of Q. Furthermore, let ¢,, 1,, v = 1,..., N, be C* functions satisfying
the conditions

N
SUPPCVCSUPPTIU Cuu7 Cunu:Cua ZCV———lin Q.

v=1
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For arbitrary (f,g) € Vi let 1, (f,g) denote the function 7, f if suppn, NN = 0
and the pair (7, f_, 7,g) in the contrary case. The same notation will be used for
Co(u,w) if (u,w) is an arbitrary element of the space Xj.

For every index v = 1,...,N we introduce linear operators R, such that
¢, R, n, continuously map ), into A7 and

(3.4.11) A Rumy =6 (I +T) + Ky,

where T, are linear and continuous operators in ); with small norms and K, are
linear and continuous operators from ), into V4.

First let v be an integer such that U, N 9Q = 0. By L°(z*), 8,) we denote the
principal part of the operator L with coefficients frozen in a fixed point z(*) € U,.
Then by Theorem 2.1.1 (see also Remark 2.1.1), there exists the operator

R, = (L"), Dy +31)) 7« Wi ZMR™) = Wy, (RY).

This operator realizes also a continuous mapping from W pi’r"“ (R™) onto the space

Wzl”;ir(R") Since the restrictions of the spaces W} ., (R™) and Wi(R™) to U,
coincide, the operator ¢, R, 7, can be considered as a continuous operator from
Y, into X;. We extend the coefficients a, of L outside U, to smooth 2m-periodic
functions a, , on R” satisfying the condition |a, o(z) — as(z*))| < € and denote

the differential operator with the coefficients a, o by L,. Then
AlCuRunV(faf_]) - L CI/ Vnu
=G f+¢ (Ly = L2, Dy + 31)) Ry f+ [, O] Ry f,

where [L,,(,] = L,{, — (, L, is the commutator of L, and (,. Here the operator

Ly “lr, - L°(z™), D, + 1) can be written in the form

Lu,l = LI/,I Sp + Ly,l (I - Sp) y

where S, denotes the operator (2 1 8). If p is large, then by Lemma 2.1.1, the
operator norm W} . .(R™) — wi? per (R™) of L, 1S, is small, while L, 1 (I —S,)

continuously maps W4 ., (R") into Wi pﬁ’TnH(]R"). Thus the operator R, has the
desired properties.

Analogously, the operator R, can be constructed in the case U, N dQ # 0 by
means of Theorem 2.2.1 (see also Remark 2.2.3). The representation (3.4.11) for
A¢, R, n, can be shown using the operators S, 1, S,2 in the proof of Theorem
2.3.5.

We define the operator R, : YV, — A} as follows:

N
Re=Y CRon (I+T,)7"

v=1
Then by (3.4.11), we have

N
AR, =T+ K,(I+T)7",
v=1
i.e., R, is a right regularizer for the operator A.
Existence of a left reqularizer. Let R, be the operators introduced in the first
part of the proof. For these operators also the representation

CVRUnV‘AZCV(I+TV+KV)



90 3. ELLIPTIC PROBLEMS IN SMOOTH DOMAINS

holds, where T, is a linear and continuous operator in A; with small norm and K,
is a compact operator in X;. For example, in the case suppn, N OQ = 0 we have

Cu RV M -Al (’LL, H) = CV Ru UM LVU = Cu Ru (Lu (nuu) - [Lua 771/] U)
= CV (’U, + RV LU,ISp (nvu) + RU Lu,l(I - SP) (nl/u) - Ru [Ll/a 7)1/] u)

where L, 1, S, are the same operators as in the first part of the proof. Here the
operator R, L, 1S,m, has a small norm &; and R,L, (I — S,)n,, R,[L,,n,] are
continuous operators from A&; into Xj;+1. An analogous representation holds in the
case supp 1, N OQ # (. Thus,
N
R = Z(I + Tv)_l CI/ R, n,
v=0

is a left regularizer for the operator A;. m

REMARK 3.4.1. We have always assumed in this chapter that ord By < 2m for
k=1,...,m+ J In fact, for the validity of Theorems 3.4.1 - 3.4.3 it is sufficient
that there is the representation (3.1.6) for the vector of the operators By.

3.5. The Green function of the boundary value problem

In this section we consider the solutions of elliptic boundary value problems
with é-distributions on the right-hand sides. These solutions are of special interest,
since they occur in integral representations for solutions of the same problem with
arbitrary right-hand sides. One calls these solutions Green functions of the given
boundary value problem.

For the sake of simplicity, we start with the case when the kernel and the cok-
ernel of the operator A of the boundary value problem are trivial. Then the Green
functions are uniquely determined as solutions corresponding to é-distributions in
the right-hand sides of the differential equation or boundary conditions. In the case
of nontrivial kernel and cokernel we introduce generalized Green functions.

3.5.1. A representation of the solution for uniquely solvable bound-
ary value problems. We suppose that ord By < 2m for k = 1,...,m + J and
that the operator

A s WEE™(Q) x WEETV2(00) — Wim0(@) x W, 272 (00)
of the boundary value problem (3.1.1), (3.1.2) is an isomorphism for one and, con-
sequently, for all integer I. .

Let f(z) = 6(xz — y), where y is a fixed point in €2, and let g = 0. Since
f e W2mHQ)* for 2m — 1 > n/2, there exists a unique solution
(35.1) (G(,y), 2(,),G(,y)) € W™ () x Wy =712(80), 1< 2m —n/2,

of the boundary value problem (3.1.1), (3.1.2). We call this solution Green function
of the boundary value problem (3.1.1), (3.1.2).

LEMMA 3.5.1. The function G(-,-) is smooth in Q x Q\diag Q, while the vector-
functions ®(-,-) and G(-,-) are smooth in OQ x Q\diag 09, where diagQ = {(z,z) :
z € O}, diagdQ = {(x,2) : = € 0Q}. Furthermore, we have

(3.5.2) &(z,y) = DG(z,y)
forz €N, yeQ, z#y.
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Proof: Using local estimates (see Lemma 3.2.4), we obtain that G(z,y), 2(z,y),
and G(z,y) are smooth with respect to x and continuous with respect to y for = # y.
Furthermore, (3.5.2) holds. Differentiating (3.1.1), (3.1.2) with respect to y and re-
peating the above consideration, we conclude that G, ®, and G are smooth with
respect to both variables outside the diagonals. m

By Corollary 3.4.1, the unique solvability of problem (3.1.1), (3.1.2) implies
the unique solvability of the formally adjoint problem (3.1.10), (3.1.11). Hence for
every fixed y € ) there exists a unique solution

(3.5.3)
(G 9), T(, ), G (y)) € WE2™(@Q) x W, "2 (60), 1 < 2m —n/2,
of the formally adjoint problem (3.1.10), (3.1.11) with the right-hand sides
fl@)=6(z-y), g=0, h=0.
Due to the Lemma 3.5.1, the functions G.(-,-), ¥(:,) and G (-, -) are smooth with

respect to both variables outside diagﬁ and diag 02, respectively. Furthermore,
U(z,y) =DGi(z,y) forz €N, y€Q, z#y.

LEMMA 3.5.2. Fory,z € Q, y # z we have

(354) G*(y,z) = G(Za y)

Proof: 1) In the case 2m > n there exists an integer number [ such that
n/2 <1< 2m —n/2. Inserting

into the Green formula (3.2.21), we get
(5(1; - y)a G*(‘Taz))g = (G(‘T7y)5 6(33 - Z))Q,
ie., (3.5.4) is true for y # 2.
2) Let 2m < n and let ¢,  be smooth cut-off functions equal to one near y and
z, respectively, such that supp ¢ Nsuppn = . Since (1 —-¢) (G(-,v), 2(-v),G(-v))
and (1 —n) (Gi(-¥),¥(,,y),G,(-,y)) are smooth, the Green formula (3.2.21) can
be applied to each of the pairs
(u, ¢, u) = ¢ (G, 2, G)(-y), (v,9,) = (1 —1) (G+, ¥, G,)(;, 2),
(U,é,ﬂ) = (1 - C) (Gag;Q)(7y)a (U;Q,Q) =" (G*ag’@.*)('wz))
(u,6,u) =(1-0) (G, 2,G)(y), (v,%,0) =(1-n) (G, ¥,G,)(-2).

Moreover, since supp({ Nsuppn = 0, both sides of the equality (3.2.21) vanish

for (’U,,Q, 2) = C (G() y)».ql('a y)’Q(',y))’ and (’Ua%’ ZJ_) =0 (G*('a y)ag('a y)’@('a y))
Consequently, analogously to the first part of the proof, we obtain (3.5.4). m

Under our assumptions on the operator A, there exist unique solutions

(3.5.5) (G (), @M (,9),6W (-, y)) € Wa>™(2) x W™= /% (59),

I < pg +1—n/2, of the boundary value problem (3.1.1), (3.1.2) with the right-hand
sides

flz)=0, g(z)=06(z—y)e,
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where y is an arbitrary point on 9Q, k = 1,... ,m + J, and e, denotes the k-th
unit vector (0,...,0,1,0,...,0) in C™*/. We call the solutions (3.5.5) Poisson
functions for the boundary value problem (3.1.1), (3.1.2).

Furthermore, the formally adjoint problem (3.1.10), (3.1.11) with the right-
hand sides

flx)=0, g(z)=0, h(z)=6z~-y)e,;,
where y is an arbitrary point on 99 and e; is the j-th unit vector in C’, has a
unique solution

356)  (GD(,1),39(,1),69 (1)) € W™ (@) x W, "2 (a0,

| < 2m+71; —n/2. Analogously, to Lemma 3.5.1, it can be shown that the solutions
(3.5.5) and (3.5.6) are smooth with respect to both variables outside the diagonal.
We denote the components of the vectors G in (3.5.1) by G;(-,y),j=1,...,J,

and the components of the vector G, (-,y) in (3.5.3) by G{®. Moreover, let
Gik gt
g(k) _ : and g(j) —
B G o Glm+Id)

LEMMA 3.5.3. There are the following relations between the functions (3.5.1),
(8.5.8), (3.5.5) and (3.5.6):

(3.5.7) GPy,2) = Gi(z,y) foryeQ, 2€09, y+ 2
(3.5.8) G¥(y,2) = Grlzy) foryedQ, z€Q, y#z,
(3.5.9) 6" (y,2) = Gialzmy) fory,z€dQ, y# 2,

k=1,...,m+J, j=1,...,J.

Proof: The equalities (3.5.7) - (3.5.9) can be proved analogously to (3.5.4). If,
for example, we insert

(uvé»ﬂ) = (G('ay)vg("y)7g('7y))? (”,Q,Q) = (Gﬁj)(-,z),gl_(j)(-,z), *E])(»Z))

into the Green formula (3.2.21), we obtain (3.5.7). Here, as in the proof of Lemma
3.5.2, one has to use cut-off functions ¢ and 7 equal to one in a neighbourhood of
y and z, respectively, such that supp{ Nsuppn =0if 2m <n —7; + 1.

In the same way we obtain (3.5.8) and (3.5.9). m

As a consequence of the foregoing Lemma, the following theorem holds.

THEOREM 3.5.1. Let f and g be smooth functions. Then the solution (u,u) of
the boundary value problem (3.1.1), (3.1.2) is given by the formulas

m+J

3510) ) = [Guo) f@do+ Y [Culwa) gila)de,
Q k=150
m+J

[ewo f@do+ Y [Gutna)- auw)de.
Q

k=150

(3.5.11)  wu;(y)
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Proof: To obtain (3.5.10), we insert (v,7,v) = (G.(-,y),¥ ( ),G.(,,y)) into

the Green formula (3.2.21). If we insert (v,%,v) = (G(’)( ), 89 (., y), g(*j)(.,y))
into (3.2.21), we get (3.5.11). m

3.5.2. Representation of the solution in the general case. Now we in-
troduce the Green function for the boundary value problem (3.1.1), (3.1.2) without
the assumption that this problem is uniquely solvable. We suppose only that the
orders of the operators By are less than 2m and problem (3.1.1), (3.1.2) is elliptic.

Then by Theorem 3.4.1, problem (3.1.1), (3.1.2) is solvable if and only if (£, g)
is orthogonal to N'* with respect to the scalar product -

<(f>g)’ (v, )« = (f,v)o + (Q>Q)89 .

Here NV* is the set of all solutions (v,v) € C*°(Q)xC>(992)™* of the homogeneous
formally adjoint problem (3.1.10), (3.1.11).
Let {(v™,2M),..., (v(¥) v(9)} be an orthonormal (with respect to the scalar
d

product (-,-)«) basis of N*. Then Zv(s)(y) (v(s),y(s)) is the orthogonal projec-
s=1
tion of (6(, y) 0) onto A'*. Consequently, for every y € Q there exists a solution

(u, $,u) € Wo™(Q) x W3 /2(8Q), | < 2m — n/2, of problem (3.1.1), (3.1.2)
with the right-hand s1des

d
(35.12)  f(z)=6(x—vy)— Zv(s)(y) v (), Zv(s) )l (z
s=1

This solution is not uniquely determined if the kernel A of the operator (3.4.1) is
not trivial. Let
(G(y), 8(9),G(y)) € W™ () x W, =712(80), 1 < 2m —n/2,

be the unique solution of problem (3.1.1), (3.1.2) with the right-hand sides (3.5.12)
which is orthogonal to N, i.e., satisfies the condition

(G('ay)> U)Q + (2(»11)’ ?)BQ + (—G—("y)’ ﬂ)an =0

for all (u, ¢,u) € . This solution is called generalized Green function of the bound-
ary value problem (3.1.1), (3.1.2).
Let v,(:) denote the k-th component of the vector-function v(*). It can be easily

seen that i m (v(s),y(s)) is the orthogonal projection of (f,g) = (0,6(-—y) &)
onto A*. sgénce for every y € 090, k =1,...,m+ J there exists a unique solution

(Gr(n), 89 (,9), 69 (,v)) € Wy (@) x W57 1(09), 1< e +1 -2,
of problem (3.1.1), (3.1.2) with the right-hand sides

d
= - ZUI(cS)(y) v(s)(x), g(z) =68(z - ZU( s) (y)v ,U(s)
s=1

which is orthogonal to A. This solution is called generalized Poisson function for
the boundary value problem (3.1.1), (3.1.2).
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Analogously to Lemma 3.5.1, the smoothness of G(-,-), (-, ), G(-,-), Q(k)(-, ),
Q(k)(', -), and Q(k)(-, -) with respect to both variables outside diag ) and diag 8,
respectively, holds.

In the same way as above, we introduce the generalized Green and Poisson
functions for the formally adjoint problem (3.1.10), (3.1.11).

As in Section 3.4, we denote the kernel of the operator AT by N't, ie., Nt =
{(’Uaga y) : (’U’y) € N*’ ﬂ = DU|BQ}' ObViouSIY7

<(v(1),£(1)7y(1))7 (1,(2),@2),2(2)))+ = (v, @) g + (M, @) 5q

is a scalar product in N'F.
Let {(u(”,g(s),y(s))}lgsgdl be a basis in the kernel N of the operator A such
that

(D, u)g + (Du) Dul)pq + (D, u)oq = 6, for j,s=1,...,d".
Then

dl
Zu(s) (y) (u(s),é(s),g(s))
s=1

is the orthogonal projection of (§(- — y),0,0) onto N with respect to the scalar
product

((f,gv ) (u ¢a )) = (f?u)Q + (Qa?)@ﬂ + (h,ﬁ)an-

Consequently, by Corollary 3.4.1, there exists a unique solution

(Gl 1), 2(,9),G. () € W3*™(Q) x 89), 1< 2m—n/2,
of the formally adjoint problem (3.1.10), (3.1.11) with the right-hand sides

d d
f@) =6 —y) - Y u@u(z), gz)=-> u)(y)e"(z)
s=1 s=1
v
= uE) (y)u) (z)
s=1

which is orthogonal (with respect to the scalar product (-,-)+) to N'*.
Analogously, for every y € 990, j = 1,... ,J there exists a unique solution

l 2m+p.+1/2(

. . . =~ 12m 1—2m
(ng)(_7y),g(ﬂ)(,,y)’g(j)(.7y)) € Wh™(Q) x W, 2 +u+1/2(aQ)

(I < 2m + 7; — n/2) of the boundary value problem (3.1.10), (3.1.11) with the
right-hand sides

d d’
- Z W) u (@), gla) =Y u (y) o
s=1

h(z) = e — Z ut® () ul® (z

which is orthogonal to N/ t.
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LEMMA 3.5.4. There are the following relations between the Green and Poisson
functions introduced above:

(3.5.13) G.(y,2) = G(z,y) fory,z€Q, y#z,
(3.5.14) Gy, 2) = Gi(z,y) foryeQ, z€0Q, y+#z,
(3.5.15) G&k)(y, z) = Gip(z,y) forycd, 2€9Q, y#z,
(3.5.16) gﬁk’j)(y,z) = Gix(z,y) fory,z€09, y#z,

ji=1L...,,k=1,... m+ J
Proof: The proof proceeds analogously to Lemmas 3.5.2, 3.5.3. If we insert

(u’é’u) = (G('7y)a Q('ay)’g("y)) and (’U’ﬂ’y) = (G*(‘,z),g(-,z),@*(',z))

into the Green formula (3.2.21), we obtain

= G(z,y) Ejlgﬂ ( 9),u), + (2(,9), ) 5 + (Gl y), u@)gﬂ)

Since (G(-,y), Q(‘,y),Q(gy)) is orthogonal to N and (G.(-,2), ¥ , 2 ) is
orthogonal to N'T, this implies (3.5.13). In the same way, the relatlons
(3.5.16) hold. m

As a consequence of Lemma 3.5.4, we obtain the following representations for
the solutions of problem (3.1.1), (3.1.2).

THEOREM 3.5.2. Let f and g be smooth functions satisfying the condition
(3.4.3). Then every solution (u,u) of the boundary value problem (3.1.1), (3.1.2)
1s given by the formulas

m+J
(3.5.17) u(y) =/G(y,x)- Ydz + Z /Gk Y, ) - gr(x d:c—i—Zc ul®(y
Q

k= 139
(3.5.18)
m+J
us(y) = /G ) f@) s+ Y [ Gialyra) gkx>dw+2cs (9 (y),
k= 139

where ¢s = (u, u(s))n + (Du|aﬂ ,Q(s))aﬂ + (u, E(s))an .

Proof: Formulas (3.5.17), (3.5.18) follow from the Green formula (3.2.21) setting
(©,%,2) = (Ge(49), 2(,9),C..(,9)), (0,%,2) = (G (1), 29(,9),67(~y)).

3.5.3. The Green function for classical boundary value problems.
Now we consider the classical boundary value problem

(3.5.19) Lu=f inQ, Bu=g on 0,

where B is a vector of differential operators By,... , By, ord By = pi < 2m — 1,
which form a normal system on Q. Let B be a vector of differential operators
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Bi+t1,- -, Bom, ord Bytk = lm+k, such that the operators Bj,... , Ba,, form a
Dirichlet system of order 2m on 0f). Then there exist 2m x m-matrices Ay, Ay of
tangential differential operators on 92 such that

(3.5.20) Du=A Bu+Ay By on o0

for u € W™ (Q) (cf. (3.1.15)). With the notation B’ = A P and B’ = —A] P we
get the classical Green formula (see (3.1.17))

(Lu,v)q + (Bu, B'v)aq = (u, LTv)q + (Bu, B'v)sq
which is valid for arbitrary u,v € W#™(Q2). According to Lemma 3.2.2, Theorem
3.2.1, the operators in this formula can be continuously extended to the space
W2l’2m(Q) with ! < 2m. Then analogously to Theorem 3.2.2, the following assertion
holds.
LEMMA 3.5.5. The Green formula
(3.5.21)
(L(’U,, _‘é)a U)Q + (B(uaf)a B/(U»@)m = (U, L+('U’y))g + (B(uaé)a B/(’U,%))ag

is valid for all (u,¢) € Wi (Q), (v,) € W2m=b2m Q) where | is an arbitrary
integer number.

Proof: By (3.2.22), we have
(3.5.22) (L(u, 9),v)g = (u, LT (v,9)) + (¢, P(v,%)) 5, -
Furthermore, from (3.5.20) it follows that Ay B(u, ¢)+Ag B(u, ) = ¢ for all (u, ¢) €
Wi2™(). Consequently,
(B(u,@,B’(v, ﬂ))@g - (B(uaé)a B/(Uaﬁ))ag
= —(B<ua$$)a Ai’- P(vvﬁ))ag - (B(’U,,Q), A;_ P(’Uay))ag = _(?a P(Uay))ag .
This together with (3.5.20) implies (3.5.21). m

The boundary value problem
(3.5.23) Ltv=f inQ, Bv=g ondQ

is formally adjoint to problem (3.5.19) with respect to the classical Green formula
given above, while the boundary value problem

(3.5.24) L*v=0inQ, Pv+QTu=0 ondQ.

is formally adjoint to problem (3.5.19) with respect to the Green formula (3.1.9).

We suppose that the boundary value problem (3.5.19) is elliptic. As in the
foregoing subsection, let {(v(*),u(*))};<,<4 be an orthonormal (with respect to
the scalar product ((-,-),) basis in the set N'* of the solutions (v,v) € C*®(Q) x
C>(9Q)™ of the homogeneous formally adjoint problem (3.5.24). Then by Lemma,
3.1.1, the vector-function v(*) is equal to B'v(®)|5q for s = 1,... ,d and {’U(s)}lssgd
is a basis in the set NV of the solutions v € C*°(Q) of the homogeneous boundary
value problem (3.5.23) satisfying the condition

(’U(j),’l)(s))ﬂ + (B’v(j), B’v(s))aﬂ =6;, forjs=1,...,d
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In the previous subsection we showed that problem (3.5.19) with the right-hand
sides

d
flz)=6(z—y) - Zv‘s) (y) v (),
(3.5.25)

Zv(s) ) BV (z), yeq,

is solvable in Wl 2m(Q), 1 < 2m —n/2. Now, in contrast to the previous subsection,
we define (G(-, y), ®(-,y)) as the (uniquely determined) solution of problem (3.5.19)
with the right-hand sides (3.5.25) satisfying the condition

(G(,y),u)g + (BG(,v), 2(-,v)), l§’u)£m =0 forallue N,

where My = {u € C®(Q) : Lu = 0, Bulsq = 0}. The function G(-,-) is called
Green function for the boundary value problem (3.5.19).
Analogously, if {u(s)}szlw,_ . is a basis in N satisfying the condition
(u(j),u(s))Q + (Bu, B’u(s))(99 =6;s forjs=1,...,d,

then there exists a uniquely determined solution (G*(-,y),£(~,y)) € Wé’zm(Q),
l<2m —n/2, of problem (3.5.23) with the right-hand sides

d
f@) = Zu“) u®(z), gl@)=-> uB(y)Bu(z), yeq,

s=1
satisfying the condltlon

(G*(')y),v)g + (BI(G*('ay)vg('ay))v Blv)ag =0 forallve N(;‘_ .

LEMMA 3.5.6. The functions G(-,-) and G.(-,-) are infinitely differentiable in
Q x_ﬁ\diag Q. Furthermore, ®(z,y) = DG(z,y), ¥(z,y) = Gi«(x,y) for z € 09,
y€N x#y and
(3.5.26) G.(y,2) = G(z,y) forz,y€Q,z#y.

Proof: The smoothness of G and G, can be proved in the same way as in
Lemma 3.5.1, while (3.5.26) follows from (3.5.21) setting (u,¢) = (G(-,y), 2(-,y))
and (v,9) = (G+(:,2),¥(+,z)). Here in the case 2m < n one has to use smooth

cut-off functions ¢ and n having the same properties as in the proof of Lemma
3.52. m

We denote the components of the vector B’ by Bj,..., B, and the compo-
nents of the vector B’ by By, .1,...,B,, ;. Inserting (v,9) = (Gi(-,y), ¥(¥))
into (3.5.21) and using (3.5.26), we obtain the following theorem.

THEOREM 3.5.3. Let f and g be smooth functions satisfying condition (8.4.8).
Then every solution u of the boundary value problem (3.5.19) is given by the formula
m+J

(3.5.27)  wu(y /G y,z) - f(z)dz + Z /Bm+k z,D.)G(y,z) - gr(x) dz

k=150

+ Z csu®(y),
s=1
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where ¢ = (u,ul®))q + (BU>B“(S))59'

3.6. Elliptic boundary value problems with parameter

This section is dedicated to elliptic boundary value problems polynomially de-
pending on a complex parameter A. Such problems arise, e.g., from model problems
in an infinite cylinder or an infinite cone (see Sections 5.2, 6.1) applying the Fourier
and the Mellin transformation, respectively. The main result in this section is the
unique solvability of such problems for complex A with sufficiently great modulus
lying near the imaginary axis. Furthermore, we prove an a priori estimate for the
solutions containing the parameter .

3.6.1. Ellipticity with parameter. Let {2 be a bounded domain in R™ with
smooth boundary 992. We consider the boundary value problem

(3.6.1) LNu=f inQ

(3.6.2) BN u+C(ANu=g on 9,

where

(3.6.3) L(\) = L(2,D,\) = > aay(z) DFN
lal+i<2m

is a differential operator of order 2m with coefficients a,; € C®(Q2), B(}) is a
vector of differential operators

(3.6.4) B(z,Dz,X) = Y briay(@)DEN, k=1,...,m+/
lal+7<pk
with coefficients by, ; € C*(€2), and C()\) = C(z, D;, \) is a matrix of tangential
differential operators
(3.6.5)
Crj(, D))= > Chjms@DIN, k=1,...,m+J j=1,..,]
|a|+SSIJ’k+TJ
with smooth coefficients.

DEFINITION 3.6.1. The problem (3.6.1), (3.6.2) is said to be elliptic with pa-
rameter if the boundary value problem

(3.6.6) L(z,D,,iDy)u(z,t) = f(z,t), e teR,
(3.6.7) B(w, Dg,iDy) u(x,t) + C(z, Dg,iDy) u(z,t) = g(x,t), €0, teR
is elliptic (see Definition 3.1.2) in the infinite cylinder C = 2 x R.

REMARK 3.6.1. If the problem (3.6.1), (3.6.2) is elliptic with parameter, then
this problem is elliptic for every fixed A.

Indeed, it is evident that the ellipticity of the operator L(z, D,iD;) implies
the ellipticity of the operator L(x, D, A) for every fixed A. Furthermore, condition
(ii) in Definition 3.1.2 is satisfied for the boundary value problem (3.6.1), (3.6.2) if
it is satisfied for the problem (3.6.6), (3.6.7).
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3.6.2. The Green formula for parameter-depending operators. Sup-
pose that the orders of the differential operators By(z, D;, A) are less than 2m.
Then the vector B(x, Dz, \)u admits the representation

(3.6.8) B(z, Dy, Nu . Q(z, Dz, A) - Du .

where Q(z, Dy, A) is a matrix of tangential differential operators Qi ;(z, Dz, A),
k=1,...,m+J,j=1,...,J, polynomially depending on A, ord Q& ; < pr+1—7,
Qk,jEOifj>,uk+1. _

Let L*(\) = LT (z, D, A) be the formally adjoint operator to L(z, D, ), i.e.,

LTz, D, u= Y D¥(aa;(@)u) V.
lal+7<2m

Analogously, let C*(\) = C*(z, D, A) and Q*(\) = Q*(x, Dz, ) be the formally
adjoint operators to C(z, D, \) and Q(z, D,, \), respectively. Then by Theorem

3.1.1, the following Green formula is satisfied for all functions @, & € C*(Q) and
all vector-functions & € C*®(8Q)7, & € C=(Q)™+/ :

(3.6.9) / L\)a-ddx + / (B + C(Niy ) gmys do

= / a- Lt (X)ddz + / (Di, PON)D + Q1T (A)D) o do + / (@&, CT(N)d) s, do,
Q o0 o)
where P()\) = P(z, D, A) is a vector of differential operators

(3.6.10) Pi(z,D0,)) = Y Pjias(@) DIN
|o|+s<2m—j

with coefficients pj.a,s € C*(€).

Now let u, v be arbitrary functions from C§°(C) on the cylinder C = Q x R, and
let u, v be arbitrary vector-functions from C§°(8C)” and C§°(8C)™*+7, respectively.
By 4, 0, @, © we denote the Fourier transforms of u, v, u, v with respect to the last
variable ¢ (see (1.2.2)). Setting A = 47 in (3.6.9) and integrating (3.6.9) relative to
T over the real axis, then by means of Parseval’s equality, it holds

(3.6.11) /L(iDt)u ‘vdxdt + / (B(iDt)u + C(iDy)u, Q)me do dt
C ac
c oc
+/ (u, C*(=iDy)v) ., do dt.
oc
Hence the boundary value problem
L+(—’iDt) V= f in C,
P(—iDy)v+Q*(—iDy)v=g, C*(-iDy)u=h onadC

is formally adjoint to the problem (3.6.6), (3.6.7), and as a consequence of Theorem
3.1.2, we get the following assertion.
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LEMMA 3.6.1. The boundary value problem

(3.6.12) LT (-Nv=f inQ,
(3.6.13) P(-XN)v+Q*(-Nu=yg, CT'(-Nuv=h ondQ

1s elliptic with parameter if and only if the problem (8.6.1), (8.6.2) is elliptic with
parameter.

3.6.3. An estimate for the solutions of parameter-depending elliptic
boundary value problems. From Theorem 3.2.3 it follows that the solution of
the boundary value problem (3.6.1), (3.6.2) satisfies an estimate of the form (3.2.27)
for every fixed A\. However, the constant ¢ in this estimate depends on the param-
eter \. Using a local estimate for solutions of the elliptic boundary value problem
(3.6.6), (3.6.7) in the cylinder C = Q2 x R, we prove an estimate for solutions of
the corresponding parameter-depending boundary value problem (3.6.1), (3.6.2),
where the parameter A appears explicitly. Beforehand, we prove the following two
lemmas.

LEMMA 3.6.2. Let ¢ be a smooth real-valued function on R' with compact sup-
port and let ¢ be an arbitrary real constant. Then

+o00 (/2]

2 ! j ]
/(1 + )| (Femsr Q) (7)| dr = Z (2]') 1Dz )
—00 J=0

for each integer | > 0. Here F;_., denotes the Fourier transformation (1.2.2) and
[1/2] is integral part of 1/2. '

Proof: By the Parseval equality, we have

+00 +oo
[+ e Finon) T Omdr = / (1+eDy) () - (0 dt
) o oo |

-3 ( j)_Zo ((eD)€(D) - ¢(t)de.

Integrating by parts, we get

+o0 400
[ i) -cwa= [ i copa
if j is an even number, and
+o0 +oo
/ (DI¢(@)) - ¢(t) dt = % / D, (D™D ¢1)*dt =0

if j is an odd number. This proves the lemma. m

LEMMA 3.6.3. Let ¢ be a smooth real-valued function on R with compact sup-
port, ¢ Z0, and let X\ =is be an arbitrary purely imaginary number.
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1) There exist constants c1, co independent of u and X such that for each u €
WL(S), 1 > 0, the following inequalities are satisfied:

(3.6.14)
1
e llollysey < Mullfysgqy + N ullZ @) < DAY lelyi-s ) < 2y »
§=0
where the function v on C is defined as
(3.6.15) vz, t) = e ((t) ulx) .

2) Analogously, for each u € Wé_l/z(aﬂ), 1 >1, and v given by (3.6.15) the
inequalities

(3:6.16)  cu ol 1-17m ey < Il 00272 ) + AP 0l o)
1-1
. l_
< 2% APl 1012 ) + NPT Tl a0 < 2 10101750,
j:
with constants c1, ¢y independent of u are satisfied.

Proof: The first assertion can be easily proved estimating the Wi-norm (3.2.1)
of the function v. Therefore, we only check the more complicated inequality (3.6.16).

First let u € Wé_l/ 2(89) be a function with support in a sufficiently small
neighbourhood U of any point zy € 9. For the sake of simplicity, we assume
that U is a subset of the hyper-plane x,, = 0 which can be identified with R™~!.
(Otherwise, we make use of a diffeomorphism z’' = k(z) which transforms U into
a subset of the hyper-plane z/, = 0.) Then the function u can be extended to a
2m-periodic function, and the Sobolev norms of u in (3.6.16) can be replaced by the
norms in the spaces ng;i:l/ 2
norm

(3.6.17)
1/2
llU“w;;iiz(Rn—lxR) = < > (g /(1 + T2 Fm V) (g, ) dT)

qun~1 R

(R"~1), while the norm of v can be replaced by the

(cf. (2.2.6)), where
Vig,t) = 0(q, (@) ~'t) = X9 (((a) 1) ulq)

and u(q) are the Fourier coefficients of u. It can be easily verified that the expression
(3.6.17) is equal to

CN2 2 PNV 2 1/2
(3 @l (@) +1r =B [(Fer ()P dr)
qGZn—I R
Using the inequality
(@2 +r =) 2 <e((@P 4+ TP+ AP,
we get the left part of the estimate (3.6.16). Furthermore, the inequality

1—
(@) + Ir = NP2 2 o Do)y — x4 [ — A
=0

=
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yields
-1
[l gnmsy 2 € Do @ (3407 N Ay + AP Aaga),
' q€Zn—1 j=0
where

de iy — ;
Ay = A5¢0 / 1+ [(Fer OO dr > 1K,
R

for j =0,1,...,l —1and j =1—1/2 (see Lemma 3.6.2). This proves (3.6.16) for
functions u with sufficiently small support. If u has arbitrary support, then this

inequality can be easily proved by means of a sufficiently fine partition of unity on
0N m

Before we give an estimate for the solution of the parameter-depending problem,
we introduce the following norms which are equivalent to the norms in Wi(Q2) and

Wé_l/ 2(8(2), respectively, for arbitrary fixed X :
(3.6.18) lullwioyy = lellwig) + A el o) »
(3.6.19) lullyi-1200,0) = ”“”W,j*”(an) + N2 ull Ly a0 -

THEOREM 3.6.1. Suppose that the boundary value problem (3.6.1), (3.6.2) is
elliptic with parameter. Then there exist positive real constants p'and 6 such that
for all A € C satisfying the conditions

(3.6.20) Al >p and |Rel| < é&|ImAl
the boundary value problem (3.6.1), (3.6.2) has a unique solution
(3.6.21) (u,u) € WAH(Q) x Wit~ 2(50)
for arbitrary given f € W3™°™(Q), g = (g1,- - , Gm+J) € Wzl_ﬁ_lﬂ(aﬂ), 1> 2m.
This solution satisfies the estimate
J
- (36.22) ”U”WZL(Q,A) + 21 ||“j||W21+fj—1/2(39,>\)
i=
m+J
< e(Iflwirmam + Y I9ellyi-m-2p00 )
k=1

where the constant c is independent of u, u and .

Proof: First we prove the inequality (3.6.22) for purely imaginary A, || > p. Let
(u,u) be an arbitrary element of (3.6.21), A € R, and let ¢,  be smooth functions
of the variable ¢ with compact support such that ¢ # 0, { 7 = {. Then the function
v(z,t) = eMu(x) and the vector-function v(z,t) = e* u(x) satisfy the estimate

”gU”WZZ(C) + “CQ”WQHI—U?(ac) <c (llnL(iDt)”||W2‘—2m(c)

Hn(BED)w + CGDYL)yt-str2 gy + 0y + 0l 2001
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(see (3.2.30)). Using the equations L(iDy)v = e*L(A)u, B(iD;)v + C(iDy)v =
e*(B(A)u + C(\)u) and the estimates in Lemma 3.6.3, we get (3.6.22) with the
additional term

lullzo@) + llullz.o0)
on the right-hand side. If |A| > p and p is sufficiently large, this implies (3.6.22)
without this additional term.
Now let A = +i|)| e? be a complex number, where 8 € (—m/2,7/2]. Since

L(X\) — L(%i|A]) = Z e ;(z) (£[3A])? (€9 — 1) D2,
latj]<2m
there exists a number § for every ¢ > 0 such that
(LX) = L(£| D)) ullyyi-2m g5y < ellullwyax

if |0] < 6. Analogous estimates are valid for the norms of (By(A\) — By (Zi|A|))ulsn
and (C ;(A) — Ckj(£i|A]))u; in Wzl_”k_l/z(é?ﬂ,)\). Hence from the validity of
(3.6.22) for purely imaginary A, |A| > p, it follows that this inequality is satis-
fied for complex A\ with |A| > p and min(] argi)|, |arg(—i))|) < 8 if § is sufficiently
small. In particular, (3.6.22) implies the uniqueness of the solution (3.6.21) for
these A. Since the formally adjoint problem of (3.6.1), (3.6.2) is also elliptic with
parameter, it follows that the problem (3.6.1), (3.6.2) is solvable in (3.6.21) for
every given f, g as in the formulation of the theorem. The proof is complete. m



CHAPTER 4

Variants and extensions

In this chapter the results of Chapter 3 are generalized to elliptic boundary value
problems for a 2m order differential equation without any restrictions on the orders
of the boundary operators and to elliptic boundary value problems for systems of
differential equations. In particular, we derive a modification of the Green formula
which was used in the previous chapters. This allows to introduce a formally adjoint
boundary value problem for arbitrary boundary value problems. Furthermore, we
extend the operator of the boundary value problem to Sobolev spaces of negative
order. Analogously to Chapter 3, it can be proved that this operator is Fredholm
if and only if the boundary value problem is elliptic.

Section 4.3 is concerned with boundary value problems in the variational form.
Here additionally to the generalized solutions of the boundary value problem, so-
called variational solutions appear. We study the relations between these solutions.

4.1. Elliptic problems with boundary operators of higher order in a
smooth bounded domain

We consider the boundary value problem (3.1.1), (3.1.2) for the 2m order dif-
ferential operator L in a bounded domain £2 C R™ with smooth boundary 0. In
Chapter 3 we have supposed that the orders of the boundary operators By are less
than 2m. Now we consider the boundary value problem (3.1.1), (3.1.2) without this
restriction.

4.1.1. A modification of the Green formula. Let x be an integer number,
K > 2m, K > max ik, and let

(4L1) A" W)t x W, TP 00) - wE@) x Wyt (a0)

be the adjoint operator to the operator

WE(Q) x Wt 2(09) 3 (w,u) —  (Lu, Bulsq + Cu)

e WE2m(Q) x Wi V2 (0)
of the elliptic boundary value problem (3.1.1), (3.1.2). In Section 3.3 we have shown
that for puy < 2m the restriction of the operator (4.1.1) to the space
(4.1.2) DEOQ) x Wy PTET2 (00, 1> 2m — &,
continuously maps the space (4.1.2) into DL~2™2™(Q) x W™ "2T1/2(5Q). By
Theorem 3.4.2, this mapping is Fredholm if the boundary value problem (3.1.1),
(3.1.2) is elliptic.
We consider the restriction of the operator (4.1.1) to the subspace

(4.1.3) DY) x Wy Y200, 1> 2m— &,

105
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of WE™2™(Q)* x W, N+E+1/2(8Q). Let (V,v) be an arbitrary element of the space
(4.1.3). Then by the definition of the space Dy" 2™ (£2), there exist a function (or a
functional) v € DIQ’O(Q) and a vector w = (w1, ... ,Wi—2m) Withw; € W2l+1_1/2(3§2)
such that

(@, V)a = (p,v)a + (D> plag, w)sn  for all p € W™ (Q).

Here D(*=2m) denotes the vector

1
pls—2m) _ PU
py-omo
Hence the functional (F, h) = A*(V,v) satisfies the equation
(4.1.4) (u, FYa + (w, h)aa = (Lu, V)a + (Bu|,99 + Cu, Q)m

= (Lu,v)q + (D" 2™ Lu|sq , w)aa + (Bulaq + Cu, v)

for all u € WE(Q), u € W= 1?(60).
We rewrite the right side of (4.1.4) for smooth functions u, v, u, v, w. By (3.1.7),
we have

o’

(4.1.5) (Lu,v)e = (4, LY v)q + (DP™ulaq, Pu|s)an
= (u,L*v)q + (D™ulog , P™v]sq)on
where P(®) is the vector with x components P;(z, D), ..., Poam(z, Ds),0,...,0

and Pj(z,D,.), j =1,...,2m, are the differential operators of order 2m — j which
occur in formula (3.1.7).

Since ord By, < k, there exists a matrix Q) of tangential differential operators
Qkj (k=1,...,m+J,j=1,...,k) such that

(4.1.6) Bulsq = Q) - DWuyaq .

Hence

(4.1.7) (Bulaa, v)aa = (PWulaq, (Q™)Tu),,
Furthermore, we can write the vector D(*~2™) Ly, on 9§ in the form
(4.1.8) DE=2M) Ly a0 = RWODWy| 5,

where

R = (Ryj(w, Da))

1<s<k—2m, 1<j<kK
is a matrix of tangential differential operators R, ; on 0} of order not greater than
2m + s — j, Rsj = 0if j > 2m + s. In particular, R 2m4s are functions on 69

which do not depend on s, i.e., we have R; omts = Riom41 for s=1,...,0 - 2m.
If L is elliptic on ©Q, then Rj 2,41 # 0 on 89. Using (4.1.8), we obtain
(4.1.9) (D™=2™) Lulaq , w)sa = (P™ulaq, (R™)Tw)aq .

The relations (4.1.5), (4.1.7), (4.1.9) yield the following modificated Green formula:
(4.1.10) (Lu, ’U)Q + (’D(”_zm)LulaQ , w)aﬂ + (Bulag + Cu, Q)an
= (u,L*v), + (D(K)Waﬂ , PMvlaq + (QU) T + (R(R))Jrﬂ)an + (2, C7 ) o
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This formula is valid for all u,v € C*®(Q), u € C®(dQ)7, w € C®(IQ)~~?™,
v € C°°(0Q)™*+/ if the vector B admits the representation (4.1.6) with x > 2m.

DEFINITION 4.1.1. Let the Green formula (2.1.10) be valid for each u, v €
C®(Q), u € C®(00)7, w € C®(8N)*2™ v € C®(dN)™ . Then the problem

(4.1.11) Ltv=f inQQ,
(4.1.12) PHy 4+ (R™)Fw + (QW)tu =g on o,
(4.1.13) Ctv=h ondf

is said to be formally adjoint to the boundary value problem (3.1.1), (3.1.2) with
respect to the Green formula (4.1.10).

REMARK 4.1.1. The formally adjoint problem (4.1.11)~(4.1.13) depends both
on the operators of the starting problem (3.1.1), (3.1.2) and on the choice of the
number k. Let ko be the smallest integer number not less than 2m such that a
representation of the form (4.1.6) is valid for the vector B. If kg < &, then the last
Kk — ko rows of the matrix (Q())* are equal to zero and the system of the last & — g
equations in (4.1.12) has the triangular form

Riwgg—2m+1 +  Reg—2mi2,k041Wro—2mt+2  + .. = Grot1
Riwiy—2m+2 + = Grot2
len—Zm = Ik

with the function R; def _Rly2m+1 in the diagonal. If the differential operator L is
elliptic, then the elements in the diagonal do not vanish on 9. Hence the formally
adjoint problems with different values of x, K > kg, are equivalent. In particular, for
ko = 2m the problem (4.1.11)—(4.1.13) is equivalent to the boundary value problem
(3.1.10), (3.1.11).

We observe further that the order of the derivatives of v in the boundary
conditions (4.1.12) is less than 2m. Thus, the boundary value problem (4.1.11)—
(4.1.13) belongs to the class of problems which has been studied in Chapter 3.

Analogously to Theorem 3.1.2, the following assertion holds.

THEOREM 4.1.1. The boundary value problem (8.1.1), (3.1.2) is elliptic if and
only if the formally adjoint problem (4.1.11)-(4.1.13) is elliptic.

4.1.2. Extension of the operator of the boundary value problem. Let
K be an arbitrary integer, kK > 2m. We consider the operator
(4.1.14)

Wi () > (u,D(”)u|ag) — (Lu, D("_2m)Lulag) e Wi =2m(Q), 1>k,
which can be identified with the differential operator L. The operator (4.1.14) can
be extended to a continuous operator

W3 (Q) 3 (u,9) — (f,8) € Wy 2™ 72™(Q), <&,
as follows. Let (u,¢) = (u,¢1,...,¢x) be an arbitrary element of the space

W2™(Q), | < k. Then the first component f € Wi 2™%(Q) of the pair (f,®) €
Wi 2mR=2m(Q) is defined as
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where i&' = (¢1,...,Pam) and L is the extension of the operator
WE2™(Q) 3 (u,D(2m)u|aQ) — Lu e WF2™0(q)
to the space Wézm(Q) (see Lemma 3.2.2), while
®=R"Wg,

where R() is given by (4.1.8). Obviously, the so defined mapping (u,0) — (f, @)
is a continuous extension of the operator (4.1.14).

In the following, we denote the operator (4.1.14) and its extension to the space
W4™(Q) with I < & also by L.

We suppose that ord By < & for k = 1,... ,m + J. According to (4.1.6), the
operator

4.1.15) W Q) 3 (u, ) — QW ¢ € Wi 2% (50)
2 ? @ 2
coincides with the operator
(4.1.16) WhS(Q) 3 (u, DWulag) — Bulon € W, £ %(00)

for I > k. Hence in the case | < k the operator (4.1.15) is the continuous extension
of the operator (4.1.16).
Thus, we have proved the following theorem.

THEOREM 4.1.2. Let k be an integer, & > 2m, x > maxord Bg. Then the
operator

(4.1.17) WE™(Q) x Wa = 2(09) 3 (v, D™ ulgn, u)

— (Lu, DE=2™) Lu|sq, Bulsq + Cu) € Wim2ms=2m Q) x Wzl—ﬁ—l/z(aﬂ)
with | > Kk can be uniquely extended to a linear and continuous operator
(4.118) A WEN(Q) x Wyt Y2(80) — Wi (@) <, ET
with | < k. This extension has the form

(u, 6,u) — (f,R"™¢, Q¢ + Cu),

where f = Lu if 2m <l < K, while in the cases | <0 and 0 <1 < 2m the functional
f e WZm=H(Q)* is given by the equalities (3.2.14) and (3.2.15), respectively.

In particular, in the case | < 0 the triple (f,®,9) = A(u, ¢,u) satisfies the
equality - B

(4.1.19)  (f,v)a + (2, w)sn + (9,v)a0
= (u,L*v)a + (¢, P™vlsq + (RW) T w + (Q™) ), + (v, CTv)sa,
for all v € W2m(Q), w e [[°22" w2m~712(90), v e W, 2T (00).
By (4.1.19), the operator A is adjoint to the operator

(09)

K—2m

wimh@) < [ wam 2 e0) x wy 2 00) 3 (0, w,0)
s=1
— (Lo, P™a|aq + (R w + (QW) Ty, CFu)

e w5(Q) x [ ws 72 (09) x Wy T2 (60)

Jj=1



4.1. BOUNDARY OPERATORS OF HIGHER ORDER 109

of the formally adjoint problem (4.1.11) - (4.1.13) if I < 0.
Repeating the proofs in Chapters 1-3, we get the following theorems.

THEOREM 4.1.3. Let k be an integer number, & > 2m, & > maxord By, and
let (u, ¢,u) € WL () x WQH'I_I/2 (092) be a solution of the elliptic boundary value
(8.1.1), (3.1.2) with the right-hand sides

£,8) = L(u, ¢) € WiH—2mn=2moy ¢ WA 50
hof 2 J 2

Then (u,¢) € Wb (Q) and u € Wé+1+1/2(89). Furthermore, (u,¢,u) satisfies
an estimate analogous to (3.2.27).

THEOREM 4.1.4. Suppose that the boundary value problem (8.1.1), (8.1.2) is
elliptic and ord By, < k for k = 1,... ,m + J, where k is an integer number not
less than 2m. Then the operator (4.1.17) (or its extension (4.1.18)) is Fredholm for
arbitrary integer .

The kernel of the operator A consists of all elements

(u, §,1) € C(0) x C ()" x C=(60)”

such that ¢ = D(")U|an and (u,u) is a solution of the homogeneous boundary value
problem (8.1.1), (3.1.2).
l—p—1/2

The element (f,®,g) € Wy >™"2™(Q) x W, (09) belongs to the range
of the operator A if and only if

(f,v)a + (2, w)aa + (g,v)an =0

for all solutions (v, w,v) € C®(Q) x C®(8Q)*~2™ x C>°(9Q)™*+ of the homoge-
neous formally adjoint problem.

For [ > k the operator A can be identified with the operator
(4.1.20)  WL(Q) x WitT2(6Q) 5 (u, u)
— (Lu, Buloq + Cu) € Wim(2) x W, £ (00).
Then as a consequence of Theorem 4.1.4, the following assertion holds.

COROLLARY 4.1.1. Suppose that the boundary value problem (3.1.1), (3.1.2)
1s elliptic. Then the operator (4.1.20) is Fredholm for 1 > 2m, | > maxord By. The
kernel of this operator consists only of C*-functions. The element

' _om l—p—1/2
(f,9) € W2m(@) x W, & (o0)
belongs to the range of the operator (4.1.20) if and only if
(f, U)Q + ('D(K_?m)flaﬂ ) M)@Q + (2, 2)39 =0

for all solutions (v, w,v) € C®(Q) x C®(NQ)~2™ x C®(8Q)™*+ of the homoge-
neous formally adjoint problem.
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4.1.3. The adjoint operator. Let | > k, where K > 2m, kK > maxord By,
and let

A W 00) x Wy T2 (60) - WhQ)T x Wy T2 (60)
be the adjoint operator to (4.1.20). The functional (F,h) = A*(V,v) is given for
arbitrary V € WL (09Q)*, v € W, et/ (6R2) by the equality
(4.1.21) (u, F)a + (u, k)ag = (Lu, V)a + (Bulsa + Cu, v) 5
where w is an arbitrary function from W(Q) and u € WE="/2(6Q).

We consider the operator of the formally adjoint problem (4.1.11), (4.1.13)
which maps the space

K—2m
(4.1.22) Wzm ln Q) x( H W2m 45— 1/2(8Q)> l+#+1/2(89)
into
(4123) Wz—l,R—Qm(Q) x (]:[ W2_Z+j_1/2(89)) x Wz—l—l—l/2(aﬂ)
=1

Let (v,7) be an arbitrary element of the space w2~ b(Q), 1 > k. Furthermore,
let
K—2m

we J[ w2 1%00) and vew, “*(00)

be given. Then (f, ®) = L*(v,v) satisfies the equalities

(4.1.24) (u, fa = (Lu,v)q — (DWu, TWy) . ue W),
and
(4.1.25) @ =5"y,

where T(®) and S(*) are matrices of tangential differential operators defined by
(4.1.26) P(K)’ZLI@Q =70 . 'D(K)’Ll,|39, D(”_2m)L+u|aQ = 5 'D(K)u|3g ,

u € C*(Q). The boundary conditions (4.1.12), (4.1.13) for (v,9), w, and v can be
written in the form

(4.1.27) Ty + (R Fw + QW) Ty = g,
(4.1.28) Ctv=h.

Comparing (4.1.21) with (4.1.24)—(4.1.28), we obtain the following relations be-
tween the operators A" and A* (cf. Lemma 3.3.1).

LEMMA 4.1.1. Let (v,9,w,v) and (f,®, g,h) be elements of the spaces (4.1.22)
and (4.1.28), respectively, where | > k. Furthermore let the functionals V €
WL2™(Q)* and F € WL(Q)* be defined as follows

(4129) (Vipla = (v,9)a+ (w, D& e),0, € Wy 2™ (),
(41.30) (Fw)e = (f,u)e+ (g, D®u),,, ue WQ(Q).
Then (v, 9, w,v) is a solution of the equation

(4.1.31) AT (v, 9, w,v) = (f,8,9,h)
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if and only if (V,v) is a solution of the equation
(4.1.32) A" (V,v) = (F\ )
and v satisfies the equations (4.1.25), (4.1.27).
Proof: Let (v,%,w,v) be a solution of (4.1.31). Then (4.1.25), (4.1.27) are
satisfied and, according to (4.1.24), (4.1.30), we have
(u, F) = (Lu,v)q+ (D(”)u, g-— T(")g)aQ
= (Lu,v)q + (D(")u, (RU)) o + (Q("))ﬂ_})aﬂ
= (Lu,v)q+ (D("_zm)Lu, w) oa T (Bu,v)aa = (Lu, V)a + (Bu,v)an
This together with (4.1.28) implies (4.1.21). Hence (V,v) is a solution of the equa-
tion (4.1.32).

Analogously, it can be shown that (4.1.31) follows from (4.1.25), (4.1.27), and
(4.1.32). =

Note that the equations (4.1.25), (4.1.27) have a unique solution % for arbitrary
given ®, g, v, w if the operator L is elliptic. This follows from the structure of the
matrices S(*) and T (cf. Remarks 3.1.2, 4.1.1).

Using Theorems 4.1.3, 4.1.4 and Lemma 4.1.1, we obtain the following result
(cf. Theorem 3.4.2).

THEOREM 4.1.5. Suppose that the boundary value problem (3.1.1), (3.1.2) is
elliptic. Then the operator A* (or its restriction) is Fredholm as a mapping from

(4133) D2_l+2m;ﬁ—2m(9) « W2_1+H+1/2(89)
mto
(4134) Dz_lﬂi(ﬂ) X Wz—l—1+1/2(89)

for arbitrary integer . The kernel of A* consists of all pairs (V,v) € Wi~ *™(Q)* x
C>(8Q)™* such that the functional V € W5>™(Q)* has the form

V,0)a = w,0)a + (w, D& 2Molag) .,  » € WE(Q),
where v € C®(Q), w € C®(8NQ)*~2™, and (v, w,v) is a solution of the homogeneous
formally adjoint boundary value problem (4.1.11)-(4.1.18). The equation
A* (V,v) = (F, h)
1s solvable in ({.1.33) for a given element (F,h) of the space (4.1.34) if and only if
(u, F)o + (u, hjoa =0

for all solutions (u,u) € C®(Q) x C=(dN)” of the homogeneous boundary value
problem (3.1.1), (8.1.2).

4.2. Boundary value problems for elliptic systems of differential
equations

In this section boundary value problems for systems of N differential equations
in a smooth bounded domain {2 are considered. First we introduce the notion
of ellipticity for such problems which is necessary and sufficient for the Fredholm
property of the operator of the boundary value problem. Furthermore, we derive a
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Green formula and extend the operator of the boundary value problem to Sobolev
spaces of arbitrary integer order.

4.2.1. Ellipticity of the boundary value problem. Let
L(:l?, Dm) = (LL]' (CZ:, Dm))

be a matrix of linear differential operators with infinitely differentiable coefficients
on . We assume that the determinant of the matrix (L;;(z,£)), i< is a poly-
nomial of even order 2m > 2 and there exist integer numbers s; < 0 and t; >0
(1,7 =1,...,N) with max(s1,...,sy) = 0 such that

(421) OI‘dLiyj <s;+ t]‘ , Li,j =0if s; + t]‘ <0,

(4.2.2) sitsat syttt t oty =2m.

Note that under these assumptions,

1<i,j<N

min s;+ max t; >0 and max s;+ min t; >0.
1<i<N 1<5<N 1<i<N 1<i<N

Otherwise, from (4.2.1) it follows that at least one row or one column of the matrix
(L;,;(€)) is identically equal to zero, i.e., the determinant of this matrix vanishes.
Furthermore, let

B(z,D,) = (Bk,j(x,Dz))

be a (m + J) x N-matrix of linear differential operators with smooth coefficients
satisfying the condition

(4.2.3) ordBy; <o +t;, Br; =0 if o + t; <0,

1<k<m+J, 1<j<N

where o}, are given integer numbers. Additionally, let

C(@, D) = (Cho(z, D))

1<k<m+J, 1<v<J

be a (m + J) x J-matrix of tangential differential operators on 912,

(4.2.4) ordCr, <or+7, Ci,=0ifor+7, <O0.
Here 11,...,7; are also integer numbers.

We consider the boundary value problem
(4.2.5) L(z,Dz)u=1f inQ,
(4.2.6) B(z,Dz)u+Cu=g on Q.
This means, for a given vector-function f = (f1,... ,fy) on £ and a given vector-
function g = (91, -+, Gm+s) on 0N one has to find a vector-functionu = (uy,...uy)
on 2 and a vector-function u = (uy, ... ,uy) on 99 satisfying the equations (4.2.5),
(4.2.6).

Again we denote by L7 ; the principal part of the operator L, ;, i.e., if L; j(x, D.)
is a sum of terms a%’(z) D2, then
Ly;(@, Do)=Y ail(x) DS
lal=si+t;
In the cases s; +t; <0 and ord L; j < s; +t; we set L7 ; (z, Dz) = 0. Analogously,

the principal parts By ; and C} , of the operators By ; and Cy,, are defined. The
corresponding matrix operators are denoted by L°, B°, and C°.
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Under our assumptions on the orders of the differential operators L; ;, By, ;, and
C,v, the operator A of problem (4.2.5), (4.2.6) can be considered as a continuous

mapping
(4.2.7) W) x WEFTY2(00) — WE2(Q) x W27 (60)

for arbitrary arbitrary nonnegative integer [ > max(oy,... ,0m4s), where

wite) = [[Wis @, Wit (on) - f[ W, (00,
j=1 j=1
and analogous notation is used on the right side of (4.2.7).
DEFINITION 4.2.1. The matrix operator L(z, D,) is said to be elliptic in §) if
det L°(z,&) #0  forall z € Q, £ € R™\{0}.

If moreover the polynomial 7 — det L°(z, & + 7¢) has exactly m zeros (counting
multiplicity) in the upper half-plane Im 7 > 0 for arbitrary linearly independent
vectors &, ¢ € R™, then the operator L(x, D;) is said to be properly elliptic.

For arbitrary z(© € 8Q and arbitrary vectors ¢’ tangential to 89 in z(9 let
M (&) be the linear m-dimensional space of the stable solutions of the equation

L°(z9,¢ +v(@®@) D) u(t) =0, t>0,
which tend to zero as t — oco.

DEFINITION 4.2.2. The boundary value problem (4.2.5), (4.2.6) is said to be
elliptic if
(i) the operator L is properly elliptic in £,
(ii) for every z(® € 0Q, every vector £ tangential to Q in z(®), and every
g € C™7 there exist exactly one function u € M™(¢’) and one vector
u € C satisfying the equation

B°(z9,¢ + v(zV) Dy) u(t)|,_, + C°(z,)u=g.

4.2.2. The formally adjoint boundary value problem. In order to con-
struct a formally adjoint boundary value problem to the given problem (4.2.5),
(4.2.6), we generalize the Green formula (4.1.10) to the case N > 1. Let

(4.2.8) o0 & max(0,01 +1, ..., 0mps +1).

We consider the expression
N

(429) / (L_l_l, g)cN dxr + / Z (D(”O—Si)Li,juj ,_»Lg(i))(cao_Si do

Q o =ti=

iy

+ / ((Bu+ Cu), 1) gy do
89
for arbitrary vector-functions u = (u; ... ,un), 0 = (vy,...,0y5) € C®Q)N, u €
C>®(0Q)7, v € C* ()™, and w® € C®(8Q)°°~%,i =1,...,N. Here D(70~5:)
denotes the vector with the components 1,D,,..., D%~ %"! if g5 — s; > 0. In the

case 0o — s; = 0 we set D(?0=%:) =0, i.e., the corresponding term in (4.2.9) can be
omitted.
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Applying formula (4.1.5) to the differential operator L, ;(z, D;), we get

] Liju; - 0;dz = / uj - L o do + / (DUoo)y; , PR90;) ogie, do

o) ) a0
where Lgfj is the formally adjoint operator to L; ;, and P*/ = (P}, ... ’P;Bj+t])
are vectors of linear differential operators Py (x, D), ord Pp7 < s; 4 t; — .

If we denote by BV the (oo +t;) x N-matrix with the columns P1J,... , PN,
we have

(4.2.10)
N
/ (LE’ E)CN dr = / (E) L+g)(cN dx + Z/ (‘D(UO"rtJ)uj ’m(j)g)((:°0+tj do.
Q Q =150

Furthermore, analogously to (4.1.9), for arbitrary u; € C°°(Q) and arbitrary vector-
functions w® = (..., w®__ ) e C®BR)~5 we get

00—Si

(4211) / (D("O"si)Li,juj ,w(i))cN do = / ('D(Go+tj)Uj, (Ri’j)+ﬂ(i))cao+t] dO’,
o) 9
where R%7 is a (00 — 8;) x (09 + t;)-matrix of tangential differential operators on
0Q and (R“)* denotes the formally adjoint matrix operator to R%7.
It remains to rewrite the last term in (4.2.9). To this end, we write the vector

Bu in the form
N

(4.2.12) Bul,, =Y _ QUDEot)y | .
j=1

Here QU) are (m + J) x (0g + t;)-matrices of tangential differential operators on
0. Then

N
(4'2‘13) / (BE’ Q)(Cm—u do = Z/ (D(a°+tj)11j y (Q(j))+y)cao+tj do.
o0 =150
Thus, we have proved the following theorem.
THEOREM 4.2.1. There ezist matrices P, QW) and R™ (i,j = 1,... ,N

such that the following Green formula is satisfied for arbitrary u,p0 € C®(Q)V,
u e Cm(aﬂ)J, v E Coo(aﬂ)m+J’ Q(’L) c COO(BQ)U()—S»; .

N N
(4214) / (LE, E)CN dx + / Z Z ('D(UO—Sz)Li’ju‘j ,M(i))cao_% do

Q aq =1i=1
+ [ (But Cu)) g do = [ Lt0)eudo+ [ (0O, do
a9 Q a9
N . N
+ Z/ (’D("°+t7)uj , (m(])g+ QU y + Z(Ri,j)+w(i)))cao+t‘
2
i=150 i=1

Note that the operators o — P,b|sq, and the matrices R*J in the Green formula
(4.2.14) are uniquely determined by the operator L, while the matrices QY are
uniquely determined by the matrix B.
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Analogously to the case N = 1, we define the formally adjoint boundary value
problem of the problem (4.2.5), (4.2.6) by the operators on the right-hand side of
the Green formula.

DEFINITION 4.2.3. Suppose that the Green formula (4.2.14) is valid for all
u, b € CLON, u e C°00), v e C*(8Q)™, and w® € C®(9Q)70~%, (i =
1,...,N). Then the problem

(4.215) L*tu=§ inQ,
N
(4.2.16) P o+ (QU)* Z (R w® =g ondQ, j=1,...,N,

(42.17) Ctvu=h ondQ
is said to be formally adjoint to the boundary value problem (4.2.5), (4.2.6).
The following assertion can be proved analogously to Theorem 3.1.2.

THEOREM 4.2.2. The boundary value problem (4.2.5), (4.2.6) is elliptic if and
only if the formally adjoint problem (4.2.15)-(4.2.17) is elliptic.

4.2.3. Extension of the operator of the boundary value problem. The
operator

(4.2.18) Wyt 70t (Q) 5 (uj, DO |aq)
— (Li juz, DI, juilan) € Wi 970 7%(Q), >0,
can be extended in a unique way to the space WZHtj’UOHj (Q) with [ < 0. This

extension was described in Section 4.1. We denote the operator (4.2.18) and its
extension also by L; ;.

Let W, 97°*£(0)) be the product of the spaces Wy 2°%(Q), j =1,... | N.
By (4.2.12), the mapping

N
Wl+t oo+t(Q) 5 {(uj,Q(j))}lgjgN N ZQ(i) .Q(J') c Wzl_z_lh(aﬂ),
Jj=1

l < 0y, is the continuous extension of the operator

{(uj’D(ao+tj)uj|m)}lstN - B"|an

which is defined on the space Wi 7°*(Q) with I > oy.
Thus, analogously to Theorem 4.1.2, the following assertions hold.

THEOREM 4.2.3. The operator
(4.2.19) Wit Q) x wETY2(60) 5 ({(uj,D(oo+t7)uj|ag)}1§j§N , g)
— ({(fi,'D(oo—Si)filan)}ISiSN, Q) S Wé_ﬁvao—ﬁ(ﬂ) < Wzl—g—l/Q(aQ), 1> o0,

where

fi = ZLi’j u;, g= BEIBQ + Cu,
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can be uniquely extended to a linear and continuous operator
(4.2.20)  Witeoorh @) x w2 (00) 5 ({(u), ¢<f>)}1<j<N , u)
= ({22 hzicw , g) € Wy 773 (@) x W, 7712 (00)

with | < oy. Here
n N
9= QVe¢W +Cu and  (f,89) = Li; (u;,¢"), i=1,...,N.
j=1 j=1
The last equality means that f; are functionals which have representations analogous
to (3.2.14), (3.2.15) and

N
Q(i) — ZRiyqu(j)_
=1

In particular, in the case | < —max(ty,... ,tn) we have

N
(4.2.21) Z ((fr02) + (@0,09) 1) + (g.2)o0
N

N
(u, L+n Z (¢(a), PDp + (QU)Y v + ;(Rz,J)-i-w(z))aQ + (u, C+y)m

for all v € Wy, 2(Q), w® e 10255 W, P 1260, and v € W, o2 (69).

We denote the operator (4.2.19) and its extension (4.2.20) also by A. By
(4.2.21), in the case | < —max(t1,...,ty) the operator A is adjoint to the op-
erator of the formally adjoint problem mapping the space

ago—S;
Wy (@) x H( H Wy e o)) < wy e ag)
=1
into
0'0+t]

(4222) WY xH( H Wyl 1/2(39)) x Wy T2 (90).

4.2.4. Solvability of elliptic boundary value problems for systems of
differential equations. In the same way as in the case N = 1 (cf. Theorem
3.2.3), we can prove regularity assertions and a priori estimates for solutions of the
boundary value problem (4.2.5), (4.2.6). Using the relations between the operator
A™ of the formally adjoint problem (4.2.15)—(4.2.17) and the adjoint operator A*
(cf. Lemmas 3.3.1, 4.1.1), we obtain also regularity assertions for solutions of the
equation

A*(V,v) = (£, h).
Here the operator A* can be considered for arbitrary integer ! as a continuous
mapping

D;l—‘ré’ao_é(ﬂ) ~ W2—1+g+1/2(89) N D2—1—§,00+£(Q) % Wz_l_£+1/2(89).

This leads to the following theorem.
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THEOREM 4.2.4. Suppose that the boundary value problem (4.2.5), (4.2.6) is
elliptic. Then the operator (4.2.19) (or its extension (4.2.20)) is Fredholm for
arbitrary integer l. The kernel of the operator A is independent of | and consists of
all C* wector-functions ({(uj, 9) }1<j<n ,u) such that (u,u) is a solution of the
homogeneous problem (4.2.5), (4.2.6) and ¢\ = Doty 5.

The element B

({2 hcren g) € Wy 27°75() x Wy 22 (00)

belongs to the range of A if and only if

N
(4.2.23) S (100 + (@92, 09) 10 ) + (9,2) o =0

i=1

for all solutions (v, {w®}1<i<n,v) € CXQN x [TC®(8Q)70 % x C°(9Q)™+7
of the homogeneous formally adjoint problem (4.2.15)—(4.2.17).

4.2.5. Examples.

Example 1. We consider the Lamé system of linear elasticity
(4.2.24) L(D;)u = Au+ygraddivu =f in ,

where u = (up,us,u3) denotes the displacement vector and €2 is a bounded domain
in R? with smooth boundary 0.
If we set s1 = 59 =83 =0, t; =ty = t3 = 2, we have

—[€? — &2 —7€1&2 —7€1&3
det L°(§) = €162 —|€1? — €3 —76283 =—1+7)¢°.
—v6183 —v€283 —|€? —~¢3

Hence the equation (4.2.24) is elliptic if v # —1. Moreover, the polynomial (in 7)

det Lo(€ +7¢) = —(1+7) (€ + 2r & - ¢ + 72 |¢)?)°

has exactly two different zeros

T2 =—|¢[72 (€ CEiVIERIC? - (6-¢)?)

if £ and ¢ are linear independent vectors in R3, v # —1. One of them lies in the
upper the other in the lower half-plane. Both zeros have the multiplicity 3. Thus,
the operator L is properly elliptic.

We prove the ellipticity of the Dirichlet problem for the Lamé system. Note
that every rotation y = Az of the coordinate system, where A is an orthogonal
matrix, transforms the equation

Agzu+ygrad, divyu = f
into the equation
Ay Au + v grad,, div, Au = Af.

Therefore, it suffices to verify condition (ii) of Definition 4.2.2 for the half-space
R? = {z € R" : z, > 0}. In our example the equation L°(n, D.,)u(x3) = 0 has
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the form
(4.2.25)
—[n® —m3 + 82, —mn2 Y1104
—YMime —[n|* —yn3 + 82, Y1720z, u(z3) = 0.

The set M™(n) of the stable solutions is spanned by the vector-functions u¢) =
v e-Inles 5 =12 3 where

72 m T3
2(1) = —M ) 2(2) = 72 ) 2(3) = 72 T3
0 iln] W2yt 4+ 14 0l z3)

Here the vectors 11, v(?) and 8(®|,,_q are linear independent for y # —2, n # 0.
Consequently, the Dirichlet problem

Au+ygraddivu = in , u = g on 02
is elliptic for v # —1, v # —2.
In the same way, the ellipticity of the Neumann problem
Au+ygraddivu=§ in Q,

3

8ui 611]' . N .
j;(axj + 3_%) vi+vi(y—1)divu=g; on 09, i=1,2,3,

for v # —1 can be verified.
By Theorem 4.2.4, both the operator

Ap - WHQ)® = W2 (@) x W, /*(00)°
of the Dirichlet problem and the operator

An s WHQ)? — W52 (@)% x W,~%/%(00)°
of the Neumann problem are Fredholm for [ > 2.

Example 2. We consider the Stokes system of hydrodynamics
uy _ [ —Autgradp \ _, .
(4.2.26) L(D,) (p) - ( P ) =f inQ,

where u = (uj,ug,us) denotes the velocity, p the pressure, and Q is a smooth
bounded domain in R3.
For s1 =89 =83 =0, 84 =—1,t; =ty =t3 =2, t4y =1 we have

€2 02 0 &
o 0 [ 0 & 6
L = . = .
€ 2 €3 0
Hence the equation (4.2.26) is elliptic and even properly elliptic (see Example 1).
The Stokes system (4.2.26) together with the Dirichlet boundary condition

u=g on 09,
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or with the Neumann boundary condition

puz—i-Z(g:; C(’u]>1/]—gz on 00, i =1,2,3,

forms an elliptic boundary value problem.

4.3. Boundary value problems in the variational form

In this section we study the solutions of a boundary value problem given in the
variational form. We show that the solution u € W4(Q) of a variational problem
b(u,v) = (f,v)q, where b is a certain sesquilinear form on W}(Q) x W2m4(Q),
can be understood as a generalized solution of a boundary value problem. Using
the results of Chapter 3, we obtain a theorem on the solvability of the variational
problem and regularity assertions for the variational solutions.

4.3.1. Introductory example. We consider the Dirichlet problem
(4.3.1) —Au=f in{, u=g on 0.

The solution of this problem can be understood as the solution of the following
variational problem:

Find a function u € W3 () satisfying the equations
(4.3.2) /Vu -Vudz = (f,v)a for allv EV?/'%(Q),

(4.3.3) u=g ondQ,
where (-, ) denotes the scalar product in Lo(S).

Problem (4.3.2), (4.3.3) is uniquely solvable in W3 (Q2) for arbitrary f € (V?/%(Q))*,
1/ 2 (09). Indeed, if g is an arbitrary function in W21 / 2(8(2) then there exists
a functlon u(®) ¢ W} () satisfying the boundary condition (4.3.3). Furthermore,

by the Riesz representation theorem, there exists a function u(!) eﬁ/ﬁ (2) uniquely
determined by u(9) and f such that

/vu<1> Vude = (f,v)q — /VU(O) Vodz  for all v EW(Q).
Q

Then v = u(® + 4 is the uniquely determined solution of the variational problem
(4.3.2), (4.3.3).

Let u € W2(Q) be a solution of problem (4.3.2), (4.3.3) and let F' € W} (Q)*
be an arbitrary functional such that

(F,v)a = (f,v)a for all v EVT/'%(Q)
Then

(F,v)g—/Vu-Vﬁdzzo for allvel/(f/;(ﬂ).
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Hence (see Lemma 4.3.1 below) there exists a uniquely determined functional u; €
W, / ?(89)* such that

(Fyv)q — /Vu “Vodr = (u1,v)aq for all v € WH(Q).
Q

Consequently, the pair (u,u;) satisfies the equations

/Vu -Vodz + (u1,v)s0 = (F,v)a for all v € Wy (Q),
Q

u=g on Jf.
This variational problem is equivalent to (4.3.2), (4.3.3).

Now we consider the generalized solution (w, ¢1,¢s) € Wy ?(Q) of the problem
—Aw=F in Q, w=g on ).

Due to the formula

—/Aw-ﬁdxz/Vw-Vﬁda:—i/Dyw-ida,
Q Q EI9)

this solution satisfies the equations

/Vw -Vudz —i(¢2,v)aa = (F,v)a for all v € W3 (Q),
Q

w=¢; =g on 0.

Thus, we have obtained a direct connection between the variational solution u €
W2() and the generalized solution (w, ¢1,$2) € Wy 2(Q). In particular, it holds
w = u, i.e., w does not depend on the choice of the extension F' of the functional f.

4.3.2. Formulation of the variational problem. Let L be an elliptic dif-
ferential operator of order 2m with smooth coefficients on 2 given in the form

Lu= Z Z D? (aq p(z) D2 u) ,
la|<l]B]<2m—1

where [ is an arbitrary nonnegative integer not greater than 2m. We denote the
corresponding sesquilinear form by af(,-), i.e.,

(4.3.4) a(u,v)z/ Z Z aa,,g(x)DguFf;da:.

& lal<t|pl<2m—1

Integrating by parts, we get (Lu,v)q = a(u,v) for each u, v € C§°(Q2).
Furthermore, let P and G be vectors of linear differential operators Py, Gk

(k=1,...,N) with smooth coefficients on Q, ord P, <1 —1, ord Gy < 2m —1—1.

Then we define the sesquilinear form b(-,-) on Wi(Q) x W2™4(Q) as follows:

(4.3.5) b(u,v) = a(u,v) + /(Pu, Gv)en do .
aQ
Moreover, let B and M be vectors of linear differential operators B; (j =1,...,J,

J>m—1l)and M, (s=1,...,J+l—m),ord B; = 3; <2m—1—1, ordM, = ps <
I — 1. We define the subspace V%m_l(ﬂ) of W2™={(Q) as the set of all functions
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v € W2™ Q) such that Bu = 0 on 99 and consider the following variational
problem.

For a given functional f from the dual space V™ {(Q)* of V%m‘l(ﬂ) and,

given functions gs € WQI_“S_I/Z((?Q), s=1,...,J+1—m, find a function
u € WA(Q) satisfying the equation
(4.3.6) b(u,v) = (f,v)q for each v € VI H(Q)

and the boundary condition Mu = g on 09, i.e.,
(4.3.7) Msu = g ond) fors=1,...,J+1—m.

The variational problem (4.3.6), (4.3.7) generates a linear operator B : u —
(f,g) which continuously maps W(£2) into

J+l—m
(4.3.8) varty s T wy % 09).
s=1

4.3.3. An equivalent formulation of the variational problem. It is nat-
ural to suppose that the boundary operators Bi,..., By in the definition of the
space V%m_l(ﬂ) are independent. More precisely, we assume that the following

condition is satisfied:
2m—1l—§-1/2

(B) For every wvector-function g € W, (09) there exists a function
v € W™ Q) such that Bv = g on 5.
Here W;m_l_é_l/z(aﬂ) denotes the product of the spaces W2 "% 71/%(5Q), j =
1,...,J.
Condition (B) means that there exists a right inverse A to the operator
v — Bulaq
. . Im—1-F—1/2 . om1 . "
continuously mapping the space W, = (09) into W5™*(€2). This condition
is satisfied, e.g, if the operators Bi,...,By form a normal system on 0 (see

Definition 3.1.4). In particular, it follows from Condition (B) that J < 2m — .

Let A be the above mentioned right inverse. Then for every v € W™ }(Q) the
difference v—A(Bu|aq) is a function from VZ™ (). Hence for every f € VZ™~(Q)*
we can define the functional F' € W2™(Q)* by the equality

(4.3.9) (F,v)e = (f,v—ABulsa)),,  ve W™ Q).

Clearly, F coincides with f on the subset V&™~4(Q) of W™ }(Q), i.e., the functional
(4.3.9) is an extension of f to the whole space W2™~1(Q).

LEMMA 4.3.1. Let F be a linear and continuous functional on W™ H(Q) sat-
isfying the condition

(F,v)o =0 for each v € VE™~H(Q).

: . 1— 2
Then there exists a vector-function u € W, flar-any (02) such that

(4.3.10) (F,v)a = (u, Bu|sa)aa for each v e W2mY(Q).

The vector-function u is uniquely determined by F.
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Proof: From the assumption of the lemma it follows that
(F, v = A(Blon) Ja = 0
for each v € W2™Y(Q). If we define the vector u by the equality

J
(w)on = (F,A)a, e [[w™ 7% 7(00),
j=1
we get (4.3.10). It remains to show the uniqueness of u. Suppose that (u, Bv|sa)sn
is equal to zero for each v € W™ '(Q). Then from Condition (B) it follows that

—1-p-1/2
-

(u, g)an = 0 for every vector g € W22 " 0Q). Consequently, we get u = 0. m

Lemma 4.3.1 enables us to give an equivalent formulation of problem (4.3.6),
(4.3.7) whose advantage is the absence of restrictions on the function v.

THEOREM 4.3.1. Suppose that Condition (B) is satisfied. Then the function
u € WL(Q) is a solution of the variational problem (4.3.6), (4.3.7) if and only if

there exists a vector u = (uq,... ,uy) with uj € Wzl_zm+ﬁj+1/2(89) such that

(4.3.11) b(u,v) + (u, Bvlaa)an = (F,v)q for each v e W2m={(Q),
(4.3.12) Mu=g  on 0,

where F € W™ HQ)* is an extension of the functional f € VE"H(Q)* to the
whole space W™ H(Q).

Proof: Obviously, (4.3.11), (4.3.12) implies (4.3.6), (4.3.7). We assume that
u is a solution of the variational problem (4.3.6), (4.3.7) and F € WZm™ {(Q)*
is a functional which coincides with f on VE™~!(Q). Then the functional ® €

W™ (Q)* defined by the equality
((I),U)Q = (Fa U)Q - b(u,'v), v € ng_l(Q)

is equal to zero on V& !(Q). Hence by Lemma 4.3.1, there exists a vector u such

that
(q)»U)Q = (ga BU'@Q )BQ

for each v € W2™ (). Therefore, (u,u) is a solution of problem (4.3.11), (4.3.12).
"

Note that the vector-function u in Theorem 4.3.1 depends on the choice of
the extension F, while u depends only on f an g. Furthermore, the vector u =
(uq,...,uy) satisfies the estimate

J
(4.3.13) S Ml s12 gy < (llullwoy + I1Flyze-scay-)-
=1

Indeed, let w be an arbitrary vector-function in W22 m—l~g_1/2(6ﬂ). Inserting v =

Aw into (4.3.11), where A is a continuous right inverse to the operator v — Bv|aq,
we obtain

(ﬂ, M)aﬂ - (Fa AM)Q - b(ua Aﬂ) .
This implies (4.3.13).
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4.3.4. The boundary value problem corresponding to the variational
problem. We consider the solution (u,u) of the variational problem (4.3.11),
(4.3.12) and suppose that u € WZ™(Q), while u belongs to the space WQEH/Z((‘?Q).
Furthermore, we assume that the functional F € W2™(Q)* on the right side of
(4.3.12) is an element of the space DI*™ ' (Q) (see Section 3.3), i.e., F has the

form

(4314) (F7 ’U)Q = (fa U)Q + (ﬁa DQm_l)Ul@Q )BQ 5 v E ng_l(ﬂ)v
where f € Lo(Q) and h = (hq, ... , hom—1) is a vector of functions hj, € Wf‘l/z(an),
k =1,...,2m — l. Here, again D®®*™Y denotes the vector with the components
1,D,,...,D?>™ =1 Analogously to formula (3.1.7), it can be shown that there
exists a vector S of differential operators Sk, k =1,...,2m — [, with smooth coef-
ficients on 2, ord S, < 2m — k, such that
(4.3.15) a(u,v) = /Lu-ﬁdx—l—/(SuL'm, D(Z"‘_”vbg)@m_L do

Q a0

for each u € W2™(Q), v € WZ™ Q).

LEMMA 4.3.2. There is the representation

(4.3.16) Sulaq = Q- DP™ulsq,
where
Qi1 - Qi1 Qui+2 - Qirom—1 Qi2m
0= Q1 o Qepr Qa2 0 Q2om1 0
Qom—11 - Qom—tii+1 0 e 0 0

s a trapezium matriz of tangential differential operators Qr ; on 0%, ord Qy ; <
2m+1—-k—j, Qr; =0 ifk+j > 2m+ 1. If L is elliptic in Q, then the matriz
elements Q1 2m, @2.2m—1,--- » Q2m—1,141 are functions which do not vanish on OS.

Proof: Formula (4.3.15) holds if we integrate by parts in (4.3.4). Here the as-
sertion of the lemma on the orders of the operators Q) ; follows from the inequality
ord Sk < 2m — k. Analogously to (4.3.15), we obtain the formula

(4317) a(u,fu) = /u - Ltvdx + / (D(l)u, R 'D(27n)v)cl do,

Q aQ
where R is a trapezium matrix of tangential differential operators Ry ; on 0%,

1<k<1<j<2m,ordR,; <2m+1—-k—j, Ry; =0ifk+j5>2m+ 1.
Hence by (4.3.15), (4.3.17), we get
/(Lu'ﬁ—u-LJr'u)dx
Q
- / ((DDu, RDE™0) , — (D™, QFDE™Dy) ) do.
o0
However, by (3.1.7) and Remark 3.1.2, we have

/ (Lu T—-u- L_‘i"z_)) dz = / (D(Qm)u, TD(Z’”)U)
Q 0

cam 40
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with a triangular matrix 1" of tangential differential operators Ty ;, 1 <k, j < 2m,
where the elements 11 2m,7%2m—1,... ;Tom,1 are functions not vanishing on 9.
Since the matrix T is uniquely determined, we have Q. ; = T;rk for 7 > 14 1. This
proves the lemma. m

Furthermore, there exist matrices
C=(Cir) 155< and  H = (Hjr) 1<j<n
1<k<om—1 1<k<2m—1
of tangential differential operators Cj;; and Hj; on 0Q, ordCj, < B; — k + 1,
ord Hj, <2m—1—-k, C;, =0if k> f; + 1, such that

(4.3.18) B’U|39 =(C-DpEm-hy lan
and
(4.3.19) Gvlag = H - D™Dy |aq .

Hence by means of (4.3.15), we get

(4.3.20) b(u,v) + /(g, Bv)¢s do
89
= /Lu -vdx + / (S+H*Pu+Ctu, D(Qm_l)v)cm_, do.
Q 89

This leads to the following result.
LEMMA 4.3.3. Suppose that Condition (B) is satisfied and

J
(u,u) € WE™(Q) x [] w2 (60)
j=1
s a solution of the variational problem (4.3.11), (4.3.12), where F is a functional
of the form (4.3.14) with f € Ly(Q), hg € WlC 1/2(89), and g is a vector-function

from Wzm &= 1/2(5'9). Then (u,u) is a solution of the boundary value problem
(4.3.21) Lu=f inQ,
(4.3.22) Mu=g, (S+H"P)u+Ctu=h  ondQ.

In problem (4.3.21), (4.3.22) two groups of boundary conditions occur. The
conditions Mu = g on 02 are called stable boundary conditions, whereas the con-
ditions (S + H*P)u+ C*u = h are called natural boundary conditions. In contrast
to the natural boundary conditions, the stable conditions contain only derivatives
of u up to order [ — 1.

By Theorem 3.2.1, the operator A of the boundary value problem (4.3.21),
(4.3.22) continuously maps the space

J
(4.3.23) Wy ™) x [ wy 2™+ 42 (00)
j=1
into
2m— l T l— Hs‘l/2 et l 2m+k—1/2
(4.3.24) W x I W, (89) x H (89).

s=1
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We study the relations between the solution (u, ¢,u) of the equation A(u, 9, u) =
(f,g,h) and the solution of the variational problem (4.3.11), (4.3.12). For this we
need a more precise description of the operator A on the space (4.3.23). Let (u, ¢, )
be an arbitrary element of the space (4.3.23) and (f, g, k) = A (u, ¢,u). By (4.3.15)
and (4.3.16) the functional f = L(u,¢) € W3™~ H)* is defined by the equality
(4.3.25) (f,v)a = au,v) — (Qe, D™ Dv|aq) o , e Wil(q).

Furthermore, according to (4.3.16), the boundary conditions (4.3.22) can be written
in the form

(4.3.26) Mulsn =g, QQ+H+PUI39 +Ctu=h.
This leads to the following result.

LEMMA 4.3.4. Suppose that Condition (B) is satisfied and (u,¢,u), (f,g,h)
are elements of the spaces (4.8.23) and (4.8.24), respectively. Furthermore, let the
functional F € W2™Y(Q)* be defined as follows:

(4.3.27) (F,v)a = (fv)a+ (B, D" Dvlag),,,  ve W™ Q)"
Then (u, ¢, u) s a solution of the equation

A(u, ¢,u) = (f,9,h)

if and only if (u,u) is a solution of the variational problem (4.3.11), (4.3.12) and
¢ = (¢1,... ,02m) satisfies the equations

(4.3.28) ¢j =Dl ulog forj=1,...,1, Q¢+ H Pulspn+Ctu=h

Proof: Let (u,$,u) be a solution of the equation A(u,$,u) = (f,g,h). Then
(4.3.28) is satisfied and, by (4.3.18), (4.3.19), (4.3.25), (4.3.26), we have
(o) = a(u,v) - (Q, D™ Vu)
(h— H" Pulapq — Ctu, D(zm—l)v) .
(h D(Qm_l)v) oq T (Pu, Gv)aq + (u, Bv)sn
= b(u,v) + (u, Bv)ag — (h, D™ Do) 00

= a(u,v) —

= a(u,v) —

Consequently, (u,u) is a solution of the variational problem (4.3.11), (4.3.12).
Analogously, (4.3.11), (4.3.12), and (4.3.28) imply (4.3.25) and (4.3.26). This
proves the lemma. m

Note that by Lemma 4.3.2, the system of the equations (4.3.28) has a unique
solution ¢ for arbitrary given u, u, and h if the operator L is elliptic.

4.3.5. Solvability of the variational problem. Now we investigate the
solvability of the variational problem (4.3.6), (4.3.7). For this we use the relations
between the variational problem (4.3.11), (4.3.12) and the corresponding boundary
value problem which were described in the previous lemma.

LEMMA 4.3.5. Suppose that Condition (B) is satisfied and that the boundary
value problem (4.3.21), (4.3.22) is elliptic. Then the following assertions are valid.
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1) The pair (u,u) € Wi(Q) x W, -3¢

neous variational problem

09) is a solution of the homoge-

(4.3.29) b(u,v) + (&, Bulsa )aa = 0, e w3m ),
(4.3.30) Mu=0 on 90

if and only if u € C°(Q), u € C=(0N)7 and (u,u) is a solution of the homogeneous
boundary value problem (4.3.21), (4.3.22).

2) The variational problem (4.3.11), (4.3.12) is solvable in the space Wl(Q) x
Wl 2m+ﬁ+1/2(8ﬂ) for given F € W™ H(Q)*, g € Wé_&_lﬂ(c‘)ﬂ) if and only if
(F g,0) belongs to the range of the operator A mapping (4.3.23) into (4.3.24).

Proof: 1) Let (u,u) be a solution of the problem (4.3.29), (4.3.30). Then by
Lemma 4.3.4, there exists a vector ¢ such that (u, ¢) € Wé’2m(ﬂ) and A(u, ¢, u) =
Consequently, by Theorem 3.4.1, u and u are infinitely differentiable and satisfy
the homogeneous equations (4.3.21), (4.3.22). On the other hand, by Lemma 4.3.4,
every solution (u,u) € C®(Q) x C*(dQ)’ of the homogeneous boundary value
problem (4.3.21), (4.3.22) is a solution of problem (4.3.29), (4.3.30).

2) We assume that there exists a solution (u,u) of the variational problem
(4.3.11), (4.3.12). If ¢ is the vector satisfying the equations (4.3.28) with A = 0,
then by Lemma 4.3.4, (u, ,u) is a solution of the equation A(u, ¢,u) = (F,g,0),
ie., (F,g,0) belongs to the range of the operator A. B

Conversely, if (F, g,0) belongs to the range of the operator A, i.e., there exists
a solution (u, ¢,u) of the equation A(u, ¢,u) = (f,g,h) in the space (4.3.23), then
by Lemma 4.3.4), (u,u) is a solution of the variational problem (4.3.11), (4.3.12)
with f = F. The proof is complete. m

By Theorem 3.4.2, the element (F, g,0) belongs to the range of A if and only if
(Fa U)Q =+ (ga Q)@Q =0

for each solution (v,v,w) of the equation A*(v,v,w) = 0, where A" denotes the
operator of the formally adjoint problem to (4.3.21), (4.3.22) which acts from

J+l—m 2m—1
(4331) WQQm(Q) x H Wzl-ts+1/2(aQ) x H W22m—k+1/2(aﬂ)
s=1 k=1

into

Lo xHWJ 2 (5q) HW“ 571250,

j=1 Jj=1
In order to give a condition for the existence of a solution of the starting variational
problem (4.3.6), (4.3.7), we need the following lemma.
LEMMA 4.3.6. Suppose that L is elliptic in Q and (v, v, w), where v € WEm™(1),
v E W#Jrl/z( 0, w € [[W2m*12(5Q), is a solution of the homogeneous for-
mally adjoint problem

-A+(U7y7 w) =0.
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Then (v,uv) is a solution of the problem

(4.3.32) b(u,v) + (Mulaq ,v),q, =0 for all u € W5(9),
(4.3.33) Bv=0 ondQ

and w cowncides with the vector D™ Yy|aq.

Proof: If (v,v,w) is a solution of the homogeneous formally adjoint problem to
(4.3.21), (4.3.22), then
(4.3.34) (Lu,v)g + (Mu,v)s0 + (S + HY P)u+ Ctu, w),, =0

for all u € W™ (Q), u € Wzﬁ“/z(m). By (4.3.15)—(4.3.17), we have

(Lu,v)q = (u, L+’U)Q + (D(l)u, RD(2m)’U)6Q _ ('D(zm)u, Q+D(2m_l)v)89
and
(Su,w)aq = (DP™u, QTw),, -
Hence (4.3.34) yields
(4.3.35) (u, L 0)a + (DP™u, @ (w — D™ D0)) 5, + (1, Cw)an
+(DWu, RDC™)  + (Mu, v)sq + (Pu, Hw)sq = 0.
This implies LTv = 0 and Cw = 0. Furthermore, since the last three expressions

on the left side of (4.3.35) contain only derivatives of v up to order I — 1, the last
2m — | components of the vector @* (w — D™ ~Yv|sq) vanish. Hence we have

2m—1

Z Q;j (wy — Dl’f“l’u|ag) =0 forj=1+1,...,2m,

k=1
and Lemma 4.3.2 implies w = D?™~Dy|sq. Using (4.3.18), we get Bv = 0 on 6.
Finally, from (4.3.35) and (4.3.17) we conclude that

a(u,v) + (Mulaq , v) 5 + (Pulag, HD(zm_l)ﬂ@Q)an =0

for arbitrary u € W2™(f2). Thus, we have shown the validity of (4.3.32). The prove
is complete. m

Problem (4.3.32), (4.3.33) is said to be formally adjoint to the variational prob-
lem (4.3.11), (4.3.12).

THEOREM 4.3.2. Suppose condition (B) is satisfied. Then the operator B of
the variational problem (4.3.6), (4.3.7) is a Fredholm operator from Wi(S) into
(4.3.8) if and only if the boundary value problem (4.8.21), (4.3.22) is elliptic.

Proof: 1) First we assume that the boundary value problem (4.3.21), (4.3.22)
is elliptic. Then the kernels of A and A™ are finite-dimensional. By Theorem 4.3.1
and Lemma 4.3.5, the kernel of B consists of all functions u € C*(f2) such that
(u,u) is a solution of the homogeneous problem (4.3.21), (4.3.22) for at least one
vector u € C°°(09)”7. Consequently, the kernel of B has also finite dimension.

Furthermore, from Theorem 4.3.1, Lemma 4.3.5, and Lemma 4.3.6 it follows
that the variational problem (4.3.6), (4.3.7) has a solution u € Wi(Q) if and only if

(f,v)a +(g,v)an =0
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for all (v,v,w) € ker AT. Hence the range of B is closed and the cokernel of B is
finite-dimensional.

2) Now we assume that B is a Fredholm operator from W(Q) into (4.3.8).
To prove the ellipticity of problem (4.3.21), (4.3.22), it suffices to show that the
operator A is Fredholm (see Theorem 3.2.4, Lemma 3.4.1).

First we show that the operator A has a finite-dimensional kernel. Let (u, ¢, u)
be an element of the kernel of A. Then by Lemma 4.3.4, (u,u) is a solution of the
homogeneous variational problem (4.3.29), (4.3.30) and ¢ is uniquely determined
by the equations (4.3.28) with h = 0. Hence u € ker B, whereas the vector-function
v is uniquely determined by the equality

(g’ B’U|aQ )BQ = —b(ua U) ) v E ng_l(ﬂ)

(see Lemma 4.3.1). Therefore, we get dim ker A < dim ker B < oco.
Now we show that the range of A is closed in the space (4.3.24) and the cokernel
of A is finite-dimensional. Let (F, g, h) be an arbitrary element of the space (4.3.24).

We define the functional f € VE™~}(Q)* by the equality

(f,0)0 = (F,0)a + (@, D<2m—%|ag)m . ey ).

Since B is a Fredholm operator, there exists a finite-dimensional subspace X of

J+l—m
V%m_l(Q)X H W2—l+us+1/2(3ﬂ)

s=1
such that the variational problem (4.3.6), (4.3.7) is solvable in W¥(Q) if and only
if (f,v)a +(g,v)an = 0 for each (v,v) € X. From Theorem 4.3.1 it follows that the
variational problem
b(w,v) + (4, Bvloq ) gg = (F,v)a + (b, D™ Dvlaq )oa, ve W™ HQ),
Mu=g on 09

is solvable if and only if
(4336) (Fa U)Q + (2»2)89 + (ﬁa D(Qm_l)vlaﬂ )89 =0

for each (v,v) € X. Consequently, by Lemma 4.3.4, every element (F,g,h) of the
space (4.3.24) satisfying condition (4.3.36) is an element of the range of A. Hence
the operator A is Fredholm. The proof is complete. m

If the boundary value problem (4.3.21), (4.3.22) is elliptic, then according to
Lemmas 4.3.5 and 4.3.6, we obtain the following solvability conditions for the vari-
ational problems (4.3.6), (4.3.7) and (4.3.11), (4.3.12). Problem (4.3.11), (4.3.12)
is solvable if and only if

(Fyv)e + (g,v)ae =0

for all solutions (v,v) € W™ H(Q) x WQ_HHH/Q (09) of problem (4.3.32), (4.3.33).
Analogously, problem (4.3.6), (4.3.7) is solvable if and only if f and g satisfy the
condition

(f;v)e + (g, v)on =0

for all solutions (v,v) € W2™H(Q) x WQ_H&H/Z(@Q) of problem (4.3.32), (4.3.33).
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4.3.6. A regularity assertion for the solution of the variational prob-
lem. Using the regularity assertion for solutions of elliptic boundary problems and
the connection between the variational problem (4.3.6), (4.3.7) and the correspond-
ing boundary value problem, we can prove the following theorem.

THEOREM 4.3.3. Let u € Wi(Q) be a solution of problem (4.3.6), (4.3.7).
We assume that the corresponding boundary value problem (4.3.21), (4.3.22) is
elliptic and that there exists a functional F € DY ™™*™7YQ) I > I, such that

F,v)q = (f,v)q for each v € VE"YQ). Furthermore, let the components g, of the
B 1 1/2
1—Hs—

vector-function g = (g1,... ,9s+1-m) be functions from the spaces W, (09).
Then u € WiH(Q) and
(4.3.37)

J+l—-m
“u“Wél Q) <c (”F”D;l—zm’zm—l(g) + Z ||gS”W211—us—1/2(39) + ”u”WQZ(Q))
s=1

with a constant ¢ independent of u.

Proof: By our assumption on f, there exist a vector h = (hy,... , ham—;) with
hi € W211+k_2m_1/2(39) and a function (or a functional) ® € Wi ~2™(Q) such
that

— (2m—1)
(fa 'U)Q (‘D,U)Q + (ﬁ,D ’U|aQ>6Q

for each v € V" 1(Q). According to Theorem 4.3.1, there exists a vector u €

Wé—2m+g+l/2(89) such that (u,u) is a solution of the variational problem (4.3.11),

(4.3.12), where F € W} (Q)* is the functional
(Fv)a = (@v)a+ (B D Dol ), ve W (@),

Furthermore, by Lemma 4.3.4, there exists a uniquely determined vector-function ¢
such that (u, ¢) € Wi?™(Q) and (u, ¢,u) is a solution of the equation A(u, ¢,u) =

®,9,h). From Theorem 3.2.3 it follows that (u,¢) € W2™(Q) and the vector-
g @ 2

-2 .
function u belongs to the space W,' m+g+1/2(6ﬂ). Moreover, an analogous in-

equality to (3.2.27) holds. Since ¢ is uniquely determined by (4.3.28), the norm of
¢ on the right side of this inequality can be estimated by the corresponding norms
of u, u, and h. Using the estimate (4.3.13) for the vector u, we obtain the inequality
(4.3.37). =

4.3.7. Examples.

Example 1: The Dirichlet problem for a properly elliptic operator. Let L be a
properly elliptic differential operator given in the form

Lu= Z D8 (aq,5(z) DSw)
lal,|B|<m
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with the corresponding sesquilinear form
a(u,v) = Z ao,p(z) Dyu DEv dz.
Q lallBlgm

We consider the following variational problem for the function u € W3*(Q) :

(4.3.38) a(u,v) = (f,v)a  for all v WG (Q),
(4.3.39) DMy = g on 09,

where f is a given linear and continuous functional on Vc[)/'gl(ﬂ) and g is a vector
with components gi € Wzm—kH/Q(BQ), k=1,...,m.

Let F € Wi"(Q)* be an arbitrary extension of the functional f. Then v €
Wi () is a solution of problem (4.3.38), (4.3.39) if and only if there exists a

vector-function u = (ug,... ,un), where uy € Wz_m+k_1/2(89), such that (u,u) is
a solution of the problem

(4.3.40) a(u,v) + (Q,D(m)v) oq = (Fyv)a  for all v e W (),

(4.3.41) DMy =g on dQ.

Now we consider the generalized solution (u, ¢) € W3™2™ () of the problem
(4.3.42) L(u,¢)=F,  D™ulsq=g.
By (4.3.15), (4.3.16), we have

a(u,v) = /Lu-ﬁdz—k/(Q-D(zm)u,D(m)v)Cm do
E1y)
for u,v € C*° (). Hence the solution (u, ¢) € W™ () of problem (4.3.42) satis-
fies the equation
(4.3.43) a(u,v) — (@ ¢, D), = (F,v)q for all v € W3™(Q)
and the boundary condition (4.3.41). This leads to the following results:

1) Let f be an arbitrary functional on Vc[)/’zn(ﬂ) and let F € (W3(Q))* be an
extension of f. Then u € Wi() is a solution of the variational problem (4.3.38),
(4.3.39) if and only if there exists a vector-function ¢ = (¢1,...,P2m) such that
or € Wg"‘k“/z(am fork =1,...,2m, ¢ = D "lu|pq for k = 1,...,m, and
(u, @) is a solution of the boundary value problem (4.3.42).

2) The operator B : W*(Q) — (vf/g@(ﬂ))* x [T, W 2(9Q) is Fredholm.

3) If u € Wi (Q) is a solution of the variational problem (4.8.38), (4.3.39) and
feWE), k> —m, then u € W (Q).

Ezample 2: The Neumann problem for the Laplace operator. We consider the
variational problem

(4.3.44) / Vu-Vidr = (F,v)q for all v e W, (),
Q

where F is a given linear and continuous functional on W3 () and u € W3 (2) has
to be found. ’
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Let (u,$1,¢2) be an element of the space W,*(Q), ie., u € Wi(Q), ¢ =
ulog, P2 € Wz_l/ 2(39). We denote the extension of the operator —A to the space
W,2(Q) also by —A. It maps the space W,">(R2) into W3 (Q)*. The functional
f=—A(u, ¢1,$2) is determined by the equality

(fo)a= [ Vu-Vodo—i(@uvlon,  veWHO).
Q

Furthermore, we denote the operator of the Neumann problem
(4.3.45) —Au=f inQQ, % =g on 90N
and its extension to the space W,2(€) by A. Then the following relation between
the solution u € Wy (€2) of the variational problem (4.3.44) and the generalized
solution (u, ¢1, ¢2) € Wy () of the boundary value problem (4.3.45) holds:

The function u € W4(S) is a solution of problem (4.3.44) if and only if for

arbitrary ¢s € W, /*(09Q) the tuple (u,ulaq, $2) is a solution of the equation
A (u,ulaq, ¢2) = (f,id2),

where the functional f € W3(Q)* is defined by the equality

(f;v)a = (Fyo)a —i(d2,0)00,  veWy(Q).
In other words, if F is a linear and continuous functional on W3 () having the
representation ’
(4.3.46) (F,v)a = (f,v)a+(9,v)e0, vE Wy (),
where f € W3 (Q)*, g € W{l/z(aﬂ), then (u,ulaq,g) is a solution of the equation

A (u,ulaq, —ig) = (f,9)-

Moreover, the following assertions follow from the ellipticity of the boundary value
problem (4.3.45):

1) The operator B: W2 () — W3(Q)* of problem (4.3.44) is Fredholm.
2) If u € WH(Q) is a solution of problem (4.3.44) and F is a linear and
continuous functional on W3 (Q)* having the form (4.3.46), where f € W§(Q),
€ WQIC_"I/Z(@Q), k>0, then w € Wrt2(Q) and u is a classical solution of problem
(4.3.45).

Note that the kernel of the operator B is the set of the functions u = const.,
while the range of the operator B consists of all F' € W} (Q)* such that (F,1)q = 0.

Ezample 3: V-elliptic problems. Let a(-, ) be the sesquilinear form (4.3.4) with
l=m,ie,

(4.3.47) a(u,v) = Z aa,5(z) Dou Divdzx.
Q lehlBlsm
Furthermore, let B a vector of differential operators By, k = 1,...,J, ord By =

Br < m — 1. We suppose again that Condition (B) is satisfied and consider the
following variational problem:
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For given f € VE"H(Q)* and g € ng—é_l/z(aﬂ) find a function v €
W3(Q) satisfying the equation

(4.3.48) a(u,v) = (f,v)a for all v e VE(Q).
and the boundary condition

(4.3.49) Bu=g on Q.

Here again VF'(Q2) denotes the set of all u € Wi (Q) satisfying the boundary con-
dition Bu = 0 on 0.

DEFINITION 4.3.1. The sesquilinear form (4.3.47) is said to be V-coercive if
there exist real constants ¢y and c¢1, ¢; > 0, such that Garding’s inequality

(4.3.50) Rea(u,u) + co [|ullZ, ) > e llullivy @
is satisfied for all u € VE(Q). If the inequality (4.3.50) with ¢o = 0 is valid, then
a(-,-) is said to be V-elliptic.

‘We denote the operator

W) 5 u— (f,9) € VEQ)* x W, 2% (a0)

corresponding to the variational problem (4.3.48), (4.3.49) by B.
For the proof of the Fredholm property of the operator B we need the following
generalization of the Riesz theorem which is due to P. D. Lax and A. Milgram [125].

LEMMA 4.3.7. Let X be a Hilbert space and B(-,-) a sesquilinear form on X x X
satisfying the conditions

[b(u,v)] < e ||lullx-|lv)x for all u,v € X,
|b(u,u)] > collull> forallue X,

where ¢y, ¢, are positive constants independent of u and v. Then for every linear
and continuous functional f € X* there exists a uniquely determined element u € X
such that

b(u,v) = f(7) forall ve X.
Here the norm of u in X does not exceed cal 1F N2~ -

THEOREM 4.3.4. If the sesquilinear form a(-,-) is V-coercive, then the operator
B is Fredholm and the index of B is equal to zero.

Proof: We define the operator By : V() — Vi (Q)* by the equality
(Bou,v)q = a(u,v) for all u,v € VF(Q).
Furthermore, let I be the identity operator mapping VZ () into VZ(2)*. Then
((Bo + col)u,v)q = au,v) + ¢ (u,v)q  for u,v € VF(Q).

According to (4.3.50), the sesquilinear form a(:,-) + ¢o (¢, -)q is V-elliptic. Conse-
quently, by Lax-Milgram’s lemma, the operator By + ¢ I is invertible. Since the
operator I is compact, we conclude that By is Fredholm and ind By = 0 (see, e.g.,
[92]): Analogously, the adjoint operator Bf : VE(Q) — VE(Q)* defined by the
equality

(u, Bjv)a = a(u,v), u,v € VE(Q)
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is Fredholm. The range of the operator By consists of all f € VEF(Q)* satisfying
the condition

(f,v)a=0 for all v € ker Bj.

Here, dimker B = dimcoker By = dimker By. Since the kernels of B and By co-
incide, we get dimkerB = dimkerB, = dimker Bj. We consider the range of

the operator B. Let f € VE(Q)*, g € Wz’”‘ﬁ‘”z(am, and u® = Ag, where
AW, e 2(8Q) — WJH(Q) is a continuous right inverse to the operator B.

Then problem (4.3.48), (4.3.49) can be written in the form
a(u—u® v) = (f,v)q —a@w®,v) foralveV(Q), Bu-—u®)=0 onadQ.
This problem is solvable if and only if the functional v — (f,v)q —a(u(®),v) belongs
to the range of the operator By, i.e., if

(f,v)0 —a@®,v) =0 for all v € ker B;.

Hence the range of B is closed and dim coker B = dim ker B. This proves the theo-
rem. m

REMARK 4.3.1. If the sesquilinear form a(-, -) is V-elliptic, then the variational
problem (4.3.48), (4.3.49) is uniquely solvable.

REMARK 4.3.2. If the sesquilinear form a(-, -) is symmetric and V-elliptic, then
the solution u € V() of problem (4.3.48), (4.3.49) coincides with the uniquely
determined solution of the variational problem

a(u,u) —2Re (f,u)q — min.

As a consequence of Theorems 4.3.2—4.3.4, the following regularity assertion for
the solutions of problem (4.3.48), (4.3.49) holds.

THEOREM 4.3.5. Let u € WJ*(Q) be a solution of problem (4.3.48), (4.3.49).
We suppose that the sesquilinear form (4.8.47) is V-coercive, g belongs to the space
Wé—é_l/z(aﬂ), | > m, and there exists a functional F € Dy *™™(Q) such that
(Fyv)o = (f,v)q for all v € VE(). Then u € Wi(Q).
Finally, we give a necessary and sufficient condition for the V-coercivity. Let
L(@,6)= ) aap(@)E*?
la],|Bl=m

be the principal part of the polynomial L(z,&). The differential operator L(z, D,)
is said to be strongly elliptic in Q if there exists a positive constant ¢ such that

ReL°(z,&) > clél’™ forallz €Q, £ € R™

For arbitrary z(®) € 9Q and arbitrary vectors ¢ tangential to 89 in z(®) we denote
by M (29, ¢’) the set of the stable solutions of the equation

Lo (2™, ¢ + v(z®) D)u(t)=0 fort>0
satisfying the condition B°(z(®, &' + v(2(®)) D;)uji—o = 0.
For the proof of the following result we refer to [70].

The following assertions are equivalent:
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1) The sesquilinear form (4.3.47) is V-coercive.
2) The operator L(z, D) is strongly elliptic in Q. Moreover, for all (©) € 69,
£ € R™ tangential to 0Q in (9, and u € Mo (20 ¢) the expression

oo

Y aas@®) (€ + 0@ @) D) u- (€ + v(2®) Dy) udt
0 leblBl=m

18 positive.

4.4. Further results

4.4.1. Solutions of elliptic boundary value problems in Sobolev spaces
of real order. For arbitrary real [ let W}(R™) be the closure of the set C§°(R™)
with respect to the norm

e = ( [0+ IRy o a) ",

R~

where @ denotes the Fourier transform of the function u. The space W(£2) is defined
as the restriction of WE(R™) to the domain 2. Using a sufficiently fine open covering
{U;} of 9Q and homeomorphisms «; from U; onto open subsets ; C R™!, we
define the Sobolev space W.(09) as the set of all functions u on 99 such that the

function z — u(f‘i;l(ilt)) belongs the space W/(§;) for every index j. Note that

Wé_l/ 2(89) coincides with the space of traces of functions from W(Q) on the

boundary 99 if [ > 1/2. Furthermore, let Wék(ﬂ) be the closure of the set
{(U,Q) € Cgo(ﬁ) X Cg"(aﬂ)k : ? = (ulag ,DyulaQ, cey Df_lulag)}

with respect to the norm (3.2.3).
Then the operator A of the boundary value problem (3.1.1), (3.1.2) realizes a
continuous mapping

Wy (R) x W3 =2 (@02) — Wy O®) < Wy 2 (00)
for arbitrary real [, except for the numbers %, %, Lo 2m — % (cf. Remark 1.3.2).
In the same way as it was done in Chapter 3 for integer [, it can be shown that
this operator is Fredholm if and only if problem (3.1.1), (3.1.2) is elliptic. For
boundary value problems without unknowns on the boundary we refer to the books
of J.-L. Lions, E. Magenes [126], H. Triebel [242], and Ya. A. Roitberg [206].

4.4.2. Estimates in L, and Hoélder spaces. The assertions of the first
part of this book (a priori estimate, regularity assertions, Fredholm property of the
operator of the boundary value problem) are also valid in L, Sobolev spaces W}l7
and Holder spaces Cb*. We formulate the main results for the Sobolev spaces.

Let [ be a nonnegative integer and let p be a real number, p > 1. Then W},(Q)
is defined as the the space of all functions on € such that

”u”WFt’(Q) = (/ Z |D§u(x)|pdx)1/p'

Q lao<i

By W /?(89) we denote the trace space for Wi(Q), 1> 1.
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We consider the boundary value problem (4.2.5), (4.2.6) in a bounded domain
) with smooth boundary 09). In accordance with the notation in Section 4.2, we de-
note the products of the spaces W) t%(Q) and W.=5¢(Q),i =1,... ,N, by witQ)
and Wé_ﬁ(Q), respectively. Analogous notation is used for products of the spaces
Wit P (9Q) and W7 THP(0Q).

THEOREM 4.4.1. Suppose that the boundary value problem (4.2.5), (4.2.6) is
elliptic.
1) Then the operator

(4.4.1) At WEEQ) x WIHT=Y2(00) — WE2(Q) x W)= 1/P(80)

is Fredholm forl > 0,1 > max oi. Every solution (u,u) € Wzl,ﬂ(Q) X Wé’Lz_l/ 2(89)
of this problem satisfies the estimate

(44.2) ”L‘”W;H(Q) + ||’l_l:”W1£+:—1/2(89) < ¢ (“i”w},‘é(g) + HQHWII,—Z‘UP(@Q)

+ el ooy + lulzon- )

with a constant ¢ independent of u, u.

2) If (u,u) € Wy ™4(Q) x W;l,+l_1/2(89) is a solution of problem (4.2.5), (4.2.6)
with vector-functions | € Wé/_ﬁ(ﬂ), g€ Wé/_g_l/ (89) on the right-hand sides,
[,I! > max(o1,... ,0m+J), then u € Wé(ﬂ(Q) and u € W;l,+z_1/289).

We refer to the papers of S. Agmon, A. Douglis, L. Nirenberg [7, 8] and
V. A. Solonnikov [236], where the estimate (4.4.2) and the analogous estimate
in the class of the Holder spaces C>® was proved for the case J = 0. Furthermore,
V. A. Solonnikov [236] and L. R. Volevich [251] proved the Fredholm property
of the operator (4.4.1). A Fredholm theory for pseudodifferential boundary value
problems in L, Sobolev spaces was established in the paper [82] of G. Grubb. As
in the case p = 2 let WII,*’“(Q) for nonnegative integer ! and & be the set of all pairs
(u, ¢) such that

k
weWp(Q), ¢=I(¢,... )€ H WL+/2(9Q) and
j=1
¢; = DI tuaq for j =0,... ,min(l, k).

In the case | < 0 we set Wzl,*k(ﬂ) = Wp_,l(Q)* X H?:l W,ﬁ_jH/Z(GQ), where p’ =
p/(p—1). In the same way as it was done in Sections 3.2 and 4.2, the operator of the
boundary value problem (4.2.5), (4.2.6) can be extended to a continuous operator

W}l)+§‘Uo+L(Q) x WZ,JFI_I/Q(BQ) N Wzl)—yro—ﬁ(g) % W]f,_g_l/”(aﬁ)

where 0 = max(0,01 + 1,... ,0m4+s + 1), WiT4°*E(Q) denotes the product of
the space Wittooott(Q), and W, ®7°7°(Q) denotes the product of the spaces
Wlsuo0=s(Q), i =1,...,N. Ya. A. Roitberg and Z. G. Sheftel’ [208, 204, 206]
have shown (for the case J = 0) that this operator is Fredholm for arbitrary [ if
the boundary value problem (4.2.5), (4.2.6) is elliptic.

Finally, we mention the following result of R. S. Strichartz [241] concerning
solutions of elliptic equations in Hardy spaces.
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Assume a neighbourhood of 9 can be coordinatized by 9Q x [0,1], where 00
is identified with ¢ = 0. Then the solution u of the Dirichlet problem

Lu=0 inQ, Dily=g, ondQ, k=1,...,m,
satisfies the condition
u(, )L, 00 <c  for0<t<oo

and for fixed p, 1 < p < o0, if and only if g; € L,(0) and g, belongs to the Besov
space B, kr1(9Q) for k =2,... ,m.

4.4.3. The Miranda-Agmon maximum principle. It is well-known that
every harmonic function satisfies the maximum principle

ma; z)| < max |u(x)|.
nax u(z)| < max [u(a)

If u is a solution of the strongly elliptic equation Lu = 0 of order 2m in the smooth
domain €, then the following inequality with a constant ¢ independent of u is valid:

m
lullom-say < e (Y IDE ullcm-rcom) + lull@) -

k=1
The last term on the right can be omitted if the Dirichlet problem for the equation
Lu = 0 in Q is uniquely solvable. This generalization of the classical maximum
principle was proved by C. Miranda [167, 168] for the case n = 2 and by S. Agmon
[4] for the higher-dimensional case. B.-W. Schulze [220, 221] obtained analogous
C* estimates for solutions of strongly elliptic systems and for more general boundary
conditions D¥+uy = g, on 0Q, k= 1,... ,m, where pr < 2m — 1.

4.4.4. Pointwise estimates of Green’s functions. In Section 3.5 we proved
the existence of Green or generalized Green functions for elliptic boundary value
problems. According to Theorem 3.4.1, Lemma 3.2.4, the W&?™(Q)-norm (with
respect to both variables), | < 2m —n/2, of the Green function G(z, y) is bounded.
However, many applications require pointwise estimates of Green functions.

We consider the boundary value problem

(4.4.3) Lu=f inQ, Byu=gx onodQ, k=1,...,m,

where L is a differential operator of order 2m with smooth coefficients and By
are differential operators of order pux < 2m with smooth coefficients which form a
normal system on 0%, and suppose that this problem is elliptic. Then by Theorem
3.5.3, every solution u of problem (4.4.3) with smooth functions f, gx on the right-
hand sides is given by the formula

m+J d’
uw) = [ 6wa) f@)do+ > [ B D00 gulo)do+ Y e o),
Q k=1 80 s=1

where {u(s)}s=17_“ .4’ 1s a basis in the space of the solutions of the homogeneous
problem (4.4.3) and B, are the differential operators which occur in the Green
formula (3.1.17). Yu. P. Krasovskii [117] and V. A. Solonnikov [237] proved that
the Green function G(z,y) satisfies the following estimates:

D DEG,y)| < (jo—yPm Nl 1) i 2m = n £ o+

|Dg DS G(z,y)| < (loglz—y|+1) if2m—n=la|+]y|.

A
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In [237] pointwise estimates of the Green functions were also obtained for boundary
value problems for elliptic systems of differential equations.

4.4.5. Assumptions on the coefficients and on the boundary. In Chap-
ters 2—4 it was always assumed that the coefficients of the differential operators are
of the class C'°. Much less restrictive assumptions are necessary if we deal with
solutions of finite smoothness (for older statements of such type see [7, 8, 236]).

In fact, for the localization argument applied in Section 2.3 only uniform el-
lipticity of the problem, locally small oscillation of the coefficients in the principal
parts of the differential operators together with some Sobolev multiplier type re-
strictions on the derivatives of these coefficients and the coefficients of the lower
order terms are sufficient.

Let the multiplier space M (W,"(Q2) — WII)(Q)) be the class of functions vy such
that vyu € Wlﬁ(ﬂ) for all w € W;*(f2). In the case m = [ we use the notation
M W},(Q) The usefulness of the multipliers in the theory of partial differential
equations can be seen by the example of the Schrodinger operator —A++v(x), where
~ is a function on 2. A trivial argument shows that this operator continuously maps
WE(Q) into WE=2(Q), | > 2, if and only if v € M(WL(Q) — WL2(Q)).

We consider the differential operators

L(z,Dy) = Y aa(z)Dg, Bi(,Dz)= > bpalz)D, k=1,...,m.
laj<2m I

We assume that € is a bounded domain in R™ and that for any point of the
boundary Of) there exists a neighbourhood U, a local Cartesian coordinate sys-
tem y = (y1,...,Yn), and a Lipschitz function ¢ such that UNQ =UN{z : y, >

oW1, yYn—1)} and
(444) “VC)OHMWII)_I_I/P(]Rn—l) < 5a

where 6 is a constant and [ is an integer not less than 2m. The following theorem due
to V. G. Mazya and T. O. Shaposhnikova [157] guarantees the Fredholm property
of the operator of the elliptic boundary value problem

(4.4.5) Lu=f inQ, Bgu=gr ondQ, k=1,...,m,

under mild conditions on the coefficients and on the boundary of the domain .

THEOREM 4.4.2. Suppose that the following conditions are satisfied:
(i) For any neighbourhood U C R™ there exist operators
MDy)= ) adDy,  B{(Du)= ) W.D:
a=2m a=pg
with constant coefficients such that AY = (LY,BY) is the operator of an

elliptic boundary value problem in the half-space {x : y, > 0}.
(if) For the coefficients a, the inequality

(4.4.6) Z lae — aZ&IHLw(qu) + E eSSHaa“M(ng—lal(ﬂ)_)wzt)—Zm(Q)) <é
|a|=2m |a|<2m
1s valid, where [ is an integer, I > 2m, and 1 < p < co. A similar inequality
with 2m replaced by py is valid for the coefficients by,o. Here the constant 6
in (4.4.4), (4.4.6) is assumed to be small in comparison with the norms of
the inverse operators A for all U.
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Then the operator

A Wlﬁ(Q) N W}l)—Zm(Q) « H Wé—uk—l/p(ag)
k=1
of problem (4.4.5) is Fredholm. The smallness condition on 6 can not be omitted.

The conditions stated in terms of the multipliers can be reformulated in an-
alytical form. In this way, various sufficient analytic conditions for the Fredholm
property of the operator A can be given (see [157, 158]. In particular, condition
(4.4.4) becomes 90 € W7 if p(l — 1) > n.

As it was shown in papers of F. Chiarenza, M. Frasca, P. Longo [46]-[48] and
G. Di Fazio [60], the requirement (4.4.6) of small local oscillation is not necessary
for the L, regularity. It suffices to assume that the coefficients of the principal
parts belong to the class VMO of functions of vanishing mean oscillation defined
as follows.

DEFINITION 4.4.1. [91, 212] The locally integrable function f is in the space
BMO if

de 1
[1f1l« =] sup ’—B—l / |f(z) — fB]dx < 400,
B

B

where the supremum is taken over all balls in R™ and
1
flo= g [ f@)da
| 51 J )

is the average of f in B. If, moreover,

1
sup—/|f(a:)—f3p|da:—>0 asr — 0,
p<r prlB
P

where this time the supremum is taken over all balls with radius p < r, then we say
that f is in VMO.

The basis of the just mentioned results of F. Chiarenza, M. Frasca, P. Longo
G. Di Fazio is a deep L, estimate for the commutator of a singular integral operator
and a function in VMO which was obtained by R. Coifman, R. Rochberg, and
G. Weiss [49]

In the case of second order elliptic operators with real coeflicients the restric-
tions on the coefficients ensuring different regularity properties can be relaxed even
further. We mention the De Giorgi [57]-Nash [176] and Krylov-Safonov [120]
Holder regularity results for divergence and nondivergence elliptic operators with
bounded measurable coefficients (see also [122, 75, 50, 133]). There exist coun-
terexamples showing that for higher order elliptic equations additional restrictions
to the coefficients are necessary. Here we refer to the papers of E. De Giorgi [58]
and V. G. Maz’ya [132].

4.5. Notes

1. In 1953 Ya. B. Lopatinskil [127] (for general boundary value problems) and
Z. Ya. Shapiro [231] (in the case of the Dirichlet problem for systems of differen-
tial equations of second order) established conditions under which the boundary
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value problem can be transformed into Fredholm integral equations on the bound-
ary of the domain. These requirements are often called complementary condition,
Lopatinskii condition, or Shapiro-Lopatinskii condition (see Remark 2.2.1).

2. A priori estimates for solutions of elliptic boundary value problems for a
2m order differential equation in the class of the Sobolev spaces W¥ and in other
function spaces were obtained 1958-1960 by S. Agmon, A. Douglis, L. Nirenberg
[7], F. E. Browder [37, 38], M. Schechter [213], L. N. Slobodetskii [234].

Somewhat later M. S. Agranovich, A. S. Dynin [12], V. A. Solonnikov [236],
L. R. Volevich [250, 251], L. Hérmander [86], S. Agmon, A. Douglis, L. Nirenberg
[8] extended these estimates to solutions of elliptic boundary value problems for
systems of differential equations. Note that a special class of elliptic systems of
partial differential equations was introduced in 1939 by I. G. Petrovskil [194]. Such
systems are called Petrovskii-elliptic. In 1955 A. Douglis and L. Nirenberg [63]
generalized this notion of ellipticity. In Section 4.2 we have used their definition.
Furthermore, in 1951 the definition of strong ellipticity for systems of differential
equations was given by M. I. Vishik [246].

There are two methods for obtaining estimates for the solutions. One method
consists in the use of Poisson kernels and the theory of singular integral operators
of A. P. Célderon, A. Zygmund [42] (see S. Agmon [3], S. Agmon, A. Douglis,
L. Nirenberg [7], F. E. Browder (37, 38], L. Nirenberg [189]). In contrast to
these authors, J. Peetre (193, 192], L. Arkeryd [15], and H. Triebel [242] obtained
estimates for the solutions by means of theorems on multipliers. For the case p = 2
we refer also to the books of L. Hormander [87], Yu. M. Berezanskii [27], J.-L. Lions,
E. Magenes [126], and J. Wloka [256].

From the a priori estimates for the solutions of elliptic problems obtained by
the above mentioned authors it follows that the range of the operator A of the
boundary value problem is closed and its kernel has finite dimension. To obtain
the Fredholm property of this operator it remained to show that the cokernel has
finite dimension. This was carried out by M. Schechter {214, 215] for boundary
value problems with normal boundary conditions. He described the range of the
operator A with the solutions of the homogeneous formally adjoint problem. The
same method was used in the book of J.-L. Lions, E. Magenes [126]. J. Peetre
[192] proved estimates for the solution of the adjoint equation without studying
the nature of the operator A*.

Another method for proving the finiteness of the dimension of the cokernel is the
construction of left and right regularizers (see Definition 3.4.2). This method was
applied to different situations in the works of F. E. Browder [37], A. S. Dynin [64],
M. S. Agranovich, A. S. Dynin [12], L. Hérmander [87], L. R. Volevich [250, 251],
and M. S. Agranovich [10].

3. The classical Green formula (3.1.17) was proved first by N. Aronszajn and
A.N. Milgram [16]. This formula made it possible to introduce the formally adjoint
problem for boundary value problems for a differential equation of order 2m if the
boundary operators are normal (see Definition 3.1.4) and their orders are less than
2m. M. Schechter [214] proved for such problems that the formally adjoint problem
is elliptic if and only if the starting problem is elliptic. A detailed proof of this result
can also be found in the books of J.-L. Lions, E. Magenes [126] and J. Wloka [256].
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Ya. A. Roitberg [202] generalized the Green formula (3.1.17) to nonnormal
boundary operators of order less than 2m. Here, in general, the boundary operators
of the adjoint problem are pseudodifferential operators. The Green formula (3.1.9)
we have used in Chapter 3 was first obtained by B. Lawruk [124]. He considered a
special class of elliptic boundary value problems for systems of differential operators.
In particular, in [124] it was assumed that all differential operators L, ; have the
same order s and the boundary conditions contain only normal derivatives of order
less than s. Then a Green formula analogous to (3.1.9) is valid.

Furthermore, we refer to the paper of A. S. Dikanskil [61] who considered the
adjoint boundary value problem to general pseudodifferential boundary problems.

4. In the theory of variational problems the Garding inequality (4.3.50) plays
an important role. This inequality was proved by L. Garding [73] for sesquilinear
forms corresponding to strongly elliptic differential operators and functions from
C§° (). Using this inequality it can be easily shown (see Theorem 4.3.4) that the
variational problem corresponding to the Dirichlet problem for a strongly elliptic
differential operator of order 2m is equivalent to a Fredholm operator in the space

I/?/Q"(Q) To prove that the solutions belong to the space Wi(2) with [ > m if the
boundary of the domain and the right-hand side of the differential equation are
sufficiently smooth, is more complicated. One method applied by K. O. Friedrichs
[71], F. E. Browder [36], L. Nirenberg [188] and S. Agmon [6] consists in the
estimation of difference quotients of the solution by means of Garding’s inequality.
C. G. Simader [232] established a L,, theory for solutions of the Dirichlet problem
based on a generalization of Garding’s inequality. Here he did not need the strong
ellipticity of the differential operator.

More general V-elliptic or V-coercive problems have been considered, e.g., in
the books of J.-L. Lions, E. Magenes [126] and J. Necas [184].

5. Generalized solutions (which belong to Sobolev spaces of negative or small
positive order) of elliptic boundary value problems have been considered by Yu. M.
Berezanskii [25], M. Schechter [216], E. Magenes [129], J.-L. Lions, E. Magenes
[126], Ya. A. Roitberg, Z. G. Sheftel’ 207, 208], Ya. A. Roitberg [202, 204, 206].
Yu. M. Berezanskii and M. Schechter considered generalized solutions of the 2m
order elliptic equation Lu = f in © with the homogeneous boundary conditions
Bul|sn = 0, where B is a vector of differential operators By, ..., By, of order less
than 2m which form a normal system on 9) and satisfy Lopatinskii’s condition.
They proved a priori estimates and regularity assertions for the solutions. The
disadvantage of their methods consists in the restriction to homogeneous boundary
conditions.

In the book of J.-L. Lions and E. Magenes [126] generalized solutions of the
equation Lu = f with inhomogeneous boundary conditions were considered. How-
ever, here the function f on the right-hand side of the differential equation has
to belong to some space K~"(Q2). The role of this space can be played, e.g., by
weighted Sobolev spaces.

In Chapters 1-3 and in the first two sections of Chapter 4 we followed the con-
cept of Ya. A. Roitberg and Z. G. Sheftel’ to extend the operator of the boundary
value problem to Sobolev spaces of negative order. The spaces Wzl’k were intro-
duced first by Ya. A. Roitberg [201, 203]. The solvability of elliptic boundary
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value problems in the class of these spaces has been studied by Ya. A. Roitberg,
Z. G. Sheftel’ [207, 208], Ya. A. Roitberg [202, 204, 206]. The most general result
was obtained in [204, 206]. Here Ya. A. Roitberg showed the Fredholm property of
the operators of elliptic boundary value problems for systems of differential equa-
tions (see Theorem 4.2.4). The method in [204, 206] differs from our method in
Chapters 3, 4. While we have studied the adjoint operator to prove the finiteness
of the dimension of the cokernel, in [204, 206] the Fredholm property was shown
by means of a regularizer.

6. The extension of the operator of the boundary value problem to Sobolev
spaces of negative order enabled us to introduce the Green functions in Section 3.5
as generalized solutions of the boundary value problem with é-distributions on the
right-hand side. Similarly, the Green functions were handled by Yu. M. Berezanskii,
Ya. A. Roitberg [28], Yu. M. Berezanskii [27], I. A. Kovalenko, Ya. A. Roitberg
[103], and I. A. Kovalenko, Ya. A. Roitberg, Z. G. Sheftel’ [104]. Pointwise esti-
mates of Green functions are given in the papers of Yu. P. Krasovskil [117, 118]
and V. A. Solonnikov [237].

7. In Section 3.6 we have considered elliptic problems with parameter which
are uniquely solvable for large values of the parameter. Such problems were first
studied in the papers of S. Agmon [5], S. Agmon, L. Nirenberg [9], M. S. Agranovich,
M. I. Vishik [13], and M. S. Agranovich [11].



Part 2

Elliptic problems in domains with
conical points



CHAPTER 5

Elliptic boundary value problems in an infinite
cylinder

In this chapter we consider elliptic boundary value problems in an infinite cylinder
C = {(z,t): z € Q, t €R}, where  is a bounded domain in R". We assume
that the coefficients of the differential operators are independent of ¢ or satisfy a
stabilization condition at infinity.

In the case of t-independent coefficients we obtain necessary and sufficient con-
ditions for the unique solvability of the boundary value problem in weighted Sobolev
spaces of arbitrary integer order. Additionally to the ellipticity, the nonexistence of
eigenvalues of an operator pencil on a line parallel to the imaginary axis is necessary
for the unique solvability of the boundary value problem in corresponding weighted
Sobolev spaces. This operator pencil arises if one applies the Laplace transforma-
tion with respect to ¢ to the differential operators of the boundary value problem.
We show that analogous conditions ensure the Fredholm property of the operator
of the boundary value problem if the coefficients satisfy the mentioned stabilization
condition at infinity.

Another goal of this chapter is to describe the asymptotics of the solutions at
infinity.

5.1. Operator-valued polynomials and applications to ordinary
differential equations with operator coefficients

Boundary value problems on the cylinder C = © x R can be considered as
ordinary differential equations with operator coefficients on the interval (—oo, +00).
One of the goals of this section is the description of all power-exponential solutions
of such equations. We show that these solutions are determined by the eigenvalues,
eigenvectors and generalized eigenvectors of the operator pencil which is obtained
from the ordinary differential operator via the Laplace transformation.

In the beginning of the section we recall some well-known spectral properties
of operator pencils. We refer the reader to the book of I. Gohberg, S. Goldberg,
M. A. Kaashoek [77] and to the papers of M. V. Keldysh [93, 94] and I. Gohberg,
E. I Sigal [76].

5.1.1. Eigenvalues and eigenvectors of operator pencils polynomially
depending on a complex parameter.

Notation, definitions. Let X, Y be Banach spaces with the norms || - ||x and
| - ]y, respectively. We consider the operator pencil

l
(5.1.1) A =34, N,
j=0

145
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where A; are linear and continuous operators from X into Y. The subset of the
complex plane, where 2(\) is not invertible, is called the spectrum of 2A(A). All
points in the complement of the spectrum are said to be regular. Clearly, the
spectrum of 2A(A) is a closed set.

Every number )\ € C such that ker 2()\g) # {0} is said to be an eigenvalue
of A(X) and the dimension of ker A(A) is called the geometric multiplicity of the
eigenvalue )\g. Furthermore, every nonzero element of the kernel of 2(Xg) is called
an eigenvector of 2A.

Let )¢ be an eigenvalue and let pg be an eigenvector corresponding to Ag. If
the elements ¢, ... , g, satisfy the equations

|
(5.1.2) > p ADN) poqg=0 foro=1,...,s,
g=0 1

where A9 (\) = % 2A()), then the ordered collection g, @1, ... , s is said to be a
Jordan chain corresponding to the eigenvalue Ag of the length s + 1. The elements
©1,--. ,ps are called generalized eigenvectors. The maximal length of the Jordan
chains corresponding to the eigenvector g is called the rank of the eigenvector g
(rank ¢g).

Let I = dim ker 2A(Xg). A canonical system of eigenvectors of 2(X) correspond-
ing to the eigenvalue A is a system of eigenvectors ¢1 9, ... , @10 such that rank ¢ o
is maximal among the ranks of all eigenvectors corresponding to Ag and rank ¢; g is
maximal among the ranks of all eigenvectors in any direct complement in ker (o)
to the linear span of the vectors ¢10,...,¢j-10 (5 = 2,...,I). The numbers
k; = rank;o (j = 1,...,I) are called the partial multiplicities and the sum
Kk = Ky + --- + K1 is called the algebraic multiplicity of the eigenvalue Ag. Note
that the partial and algebraic multiplicities are independent of the choice of the
canonical system of eigenvectors.

We suppose that ¢10,...,91,0 i a canonical system of eigenvectors of 2A(X)
corresponding to the eigenvalue Mo. If the vectors ¢;o,®j1,---,%jx,—1 form a
Jordan chain for each j = 1,..., I, then the system of the vectors

(pj,OaQOjJ)""(Pj,nj—l j:17-~'7I,

is called a canonical system of Jordan chains corresponding to the eigenvalue Ag.

Fredholm operator pencils.

DEFINITION 5.1.1. The pencil (5.1.1) is said to be a Fredholm operator pencil
if
(i) the operator () is Fredholm for every fixed A € C,
(ii) the operator 2A(A) is invertible for at least one A.

LEMMA 5.1.1. If2A(A) is a Fredholm operator pencil, then its spectrum consists
only of isolated eigenvalues. All eigenvalues have finite algebraic multiplicities.

We introduce the adjoint operator pencil 2*(A) to 2(\). Let A* be the dual
space to X, i.e., the set of all linear and continuous functionals on X'. We suppose
that there is a duality between X and X*, i.e., there exists a sesquilinear form (-, -};
which maps X x X* into C such that

(0, 01l < llellx llo" || 2=
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for each p € X, p* € X* and every functional h € X* can be umquely represented
in the form

h(p) = (v, ™)1

The same condition is imposed on the space ). Here (-, -} denotes the corresponding
sesquilinear form on Y x Y*.

If A is an arbitrary linear and continuous operator from X into ), then we
define the adjoint operator A* as the linear and continuous operator from )* into
X* which satisfies the equality

(‘pa A*¢>1 = <A(p, 1»0)2

for all ¢ € X, ¥ € Y*. From this definition it follows immediately that the norm of
the operator A* is equal to the norm of A.

Let 2A()\) be the operator pencil defined in (5.1.1). Then 2*()) denotes the
operator pencil

l
AN =D ATN.
j=0

This means that 2*()\) is defined by the equality
(5.1.3) (@A NP} = @V, 9)2,  peX, YeEY .

Obviously, the following assertions are valid.

LEMMA 5.1.2. 1) %A(A) is a Fredholm operator pencil if and only if A*(X\) is a
Fredholm operator pencil.

2) The number A is an eigenvalue of A(N\) if and only if Ao is an eigenvalue of
A*(\). The geometric, partial, and algebraic multiplicities of Ao and Ao coincide.

The following theorem contains a representation of the resolvent near the eigen-
values.

THEOREM 5.1.1. Let (5.1.1) be a Fredholm operator pencil. Furthermore, let
o be an eigenvalue of A(N) with the geometric multiplicity I and the partial multi-
plicities k1, ... , k1. We suppose that {@; s}j=1,..1,s=0,... ,x;—1 18 a canonical system
of Jordan chains corresponding to \o. Then the following assertions are valid.

1) There exists a canonical system {1;s};j=1,.. 1, s=0,.. x;—1 of Jordan chains
of A*(N) corresponding to the eigenvalue o such that A(\)~! has the following
representation

I K,j—].

(5.1.4) => Z /\0 —— T

j=1 s=0
in a neighbourhood of Ao, where P; s are linear and continuous operators from Y
into X,

s

(5.1.5) Pisv=>) (U, ¥jo)20js0, VE,

o=0

and T is a holomorphic operator function in a neighbourhood of Xo.
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2) The canonical system {1; s} of the first assertion is uniquely determined and
satisfies the biorthonormality conditions
o P+S+1
(516) Z Z )‘0 Pipts+i—q> wka p>2 —6]k53 Ke—1l—0
p= 0q—p+1
forg,k=1,...,1,5=0,... ,k;,—1,0=0,... ,k, — L.
3) If {¥j,s}tj=1,....1,s=0,... x,~1 s a collection of Jordan chains of A*(X) cor-
responding to Ao which is subject to (5.1.6), then this collection is the canonical
system given in the first assertion of the theorem.

5.1.2. Power-exponential zeros of ordinary differential operators. Let
2(X) be a Fredholm operator pencil of the form (5.1.1) and let Ay, p = 1,2,...,
be eigenvalues of this pencil with the geometric multiplicity I, and the partial
multiplicities s, ; (j =1,...,1,). Furthermore, let

{90(#)}] 1,0y, 5=0,... 5, ;—1  and {¢(”)}g =1, 0, s=0,.. ki, —1

be canonical systems of Jordan chains of 2A(X), A*(N) correspondlng to A, and Ay,
respectively, such that
o P+S+1 ) n
(517) Z Z q' q) “) w1i+5+1—9’ wk’:tff—z)z = 6j7k 63”%&&_1_‘7
p=0g=p+1

forj,k=1,...,1,,5=0,... ,k,;—1,0=0,... 5, — L

By M (A ( ) Au) we denote the set of all solutlons u = u(t) of the differential
equation

U
(5.1.8) AG)ult) =Y _ A;du(t)=0, teR,
which have the ” power-exponential” form
Mt N 17
(5.1.9) u(t) = e Z H‘Ps——a )
o=0

where s is an arbitrary nonnegative integer and g, ... , ps are elements of the space
X? ®o 7é 0.

LEMMA 5.1.3. The function (5.1.9) is a solution of the equation (5.1.8) if and
only if A, is an eigenvalue of A(X) and @o, @1, ... ,ps is a Jordan chain correspond-

ing to this eigenvalue.

Proof: Let u = ety be a function of the form (5.1.9). We have
(5.1.10) e MEA(8,) (M) = A0; + ) Z 91@

Obviously, the expression (5.1.10) is equal to zero if and only if

l s—o

o7 S SAD)R |, - D S A2 a | =0

7=0 t=0

for c =0,1,...,s. This is equivalent to the condition (5.1.2). m
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We set
K'/.A-,j_l
I
(5.1.11) D, ;(t) = ZO SO

for j =1,...,1,. Then the following assertion holds.

LEMMA 5.1.4. The functions

Kpy,,—1—
(5.1.12) pw A s ®,, = etut Z U'(pgus) .
o=0
j=1,...,1,, s=0,... ,k,; — 1, form a basis in N(A(d;),\,). In particular, the
dimension of N'((0;), ) is equal to the algebraic multiplicity k.1 +---+rKp1, of
the eigenvalue X,,.

Proof: The linear independence of the functions (5.1.12) follows from the ob-
servation that the leading coefficients of the vector-polynomials of the same degree
are linear independent. We prove by induction in k£ that every element

b jo
(5.1.13) u(t) = et Z S1Pk—o
o=0

(po # 0) of the set N (A(d;),A,) can be represented as a linear combination of
the functions (5.1.12). For k = 0 this assertion is trivial. Let k¥ > 0 and let
u € N(2(8:),\,) be the function (5.1.13) with ¢y # 0. Then by Lemma 5.1.3,
©0,%1,--- ,pk is a Jordan chain. Hence there exists an integer ¢ > 1 such that
rankapgo) >k+1forj=1,...,q and rankcp(“) <kforj=q+1,...,1,. Since

{goj } is a canonical system of Jordan chains, the eigenvector g lies in the linear
(W) ()

span of the eigenvectors 901,0a c Py L€
(5.1.14) po = C1 <P(1“3 Tt e 90(“)
Obviously, the elements
Noe = C1 905#3 c+cq 8051‘,‘3 )
0=0,1,...,k, with the same coefficients ¢; as in (5.1.14) form a Jordan chain of

2A(\) to the eigenvalue A,. Consequently, the function

Eto : 1-k
v(t) = eMut Z k=0 = ch et g )
o=0 7 =1

is an element of N'(A(d;), ). Thus,

g
u(t) — Z ] (Pk—0 — Mh—0)

is also an element of N(A(8;), A,). We assume that our assertion is true for k — 1.
Then u—v is a linear combination of the functions (5.1.12). This proves the lemma.
]

As a consequence of Lemmas 5.1.3 and 5.1.4, we get the following assertion.
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COROLLARY 5.1.1. Let A\, be an eigenvalue of A(\,) with the geometric mul-
tiplicity I,, and the partial multiplicities k,; (j = 1,...,1,). Furthermore, let
e, (),  j=1,...,1,

be elements of the set N'(A4(0:), A.), where @, ; are polynomials int of degree k,, j —
1 with coefficients from the space X. Suppose that the leading coefficients of the
polynomials ®,, ; are linearly independent. Then the elements

@F T @, 0(0), =1, 1, s=0,... ,ku; — 1,
form a canonical system of Jordan chains corresponding to the eigenvalue A,
Analogously to N'(A(8;), A,) we define N'(*(—8;), —A,) as the set of all solu-
tions v of the equation

l
(5.1.15) A (—0;)v(t) = Y A3 (-0:)vu(t) =0, teR,
=0

which have the form
_ S_ 4o
U(t) = e_Aut Z ; "7[)5—-0 5
o=0

where 1y, ... ,1, are elements from Y*. A basis in N(U*(—8;),—),) is given by
the functions

(5.1.16) e (=0,) i T, 4 (8),
j=1,...,1,,8=0,... ,k,; — 1, where
HH,j—l
(=t)°
(5.1.17) U,(t) = ZO ij(-f‘n)“,j_l_a-
o

In the following lemma we give a useful variant of the biorthonormality condition
(5.1.7) in terms of the bases of N (A(8;), A,) and N (A*(—8;), —A,).

LEMMA 5.1.5. Let ¢ be a smooth function on R equal to one in a neighbourhood
of 400 and to zero in a neighbourhood of —oo. Then

+oo
(5.1.18) / (200) (6(0) 07 B,5(6)) ™ (07 W) )
= 6/_L,l/ 6j,k 5,‘@#,]-—1—5,0
forg=1,... I, k=1,...,1,,5=0,... ,ky;—1,0=0,... ;K — 1.
If ¢ is equal to one in a neighbourhood of —oo and to zero in a neighbourhood
of +00, then the left-hand side of (5.1.18) is equal to —6,,, 6; k bx,, ;—1-s,0-
(Since (5.1.12) is a solution of the equation (5.1.8), the integration on the left-

hand side of (5.1.18) in both cases is effected only on a bounded interval, where the
derivative of ¢ does not vanish.)

Proof: We denote the left-hand side of (5.1.18) by Z. The proof proceeds in
three steps.
1) Let (1, 2 be functions with the same properties as ¢. Since the functions

e (=8,)7 W, (t)
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are elements of NV'(A*(—0;), —\,), we get

+o0
/ <91(5’t) (G —G) et 05D,;) , e Mt (—8,)° uk>2 dt
oo N _
= / <(C1 - CZ) et a:'@u,j » Ql*(_at) (e—A,,t (_at)o-wy)k>1 dt=0

Consequently, Z is independent of the choice of (.
2) We show that Z = 0 if y # v. By the first part of the proof, the integral

+o0
(5.1.19) / <Q((8t) (Ct+71)eM" 05D, (1)) ,e_x”t(—at)a\lfy,k(t)>2 dt
+o0 -
= / (@) (¢O) M a0, 5(t = 7)) e (<0) Wi (b - 7))t

is independent of 7. However, the expression (5.1.19) has the form
N7 pi(r),
where P is a polynomial of 7. Hence Z = 0 if y # v.
3) Let p = v. By (5.1.10), we have
+oo
(5.1.20) I= / (A + M) (C(1) 8 @(8)) 5 (=00)7 Wy ie(2)), dt.
Using the equality 2(9; + A,) 95 @, ;(t) = e+t A(8;) (e*f 03P, ;(t)) = 0 and the
decomposition

l
1
CEPWEDY an(q)(A”) a7

q=0

we get

A(8s + M) (C(8) 7Py, 5(1))

l
Z 91(") ) (0F(S0; u,5) — COF (07 ®pz))

l

Lo I s
200 3 (3) 0ro e e,
From the equality (}) = (h_l) + (hfl) + -+ (271) it follows that

h—1
q P

Z (Z) @) 8", Z (Z) @iy ottt

h=1 o

9=

iy

Q

I

Q’ﬁ
=
=

= Y (0ot "a,,)).

p=0
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Therefore, we obtain

S

Q

n[“j
Q,._.

l
B0+ X) (C01s) = 3 3 GO (COL st P

Integrating by parts in (5.1.20), we arrive at

/ (8:¢) ZZ <Q((Q) ) ot 1- PP, (_8t)a+p\1,#’k>2 dt

oo q=1p= 0

We replace ¢ by the Heaviside function x. Since 9;x(t) = §(t), it holds

I= ZZ <Q[(q (p.gu'guj—s q+P’¢k¢nuk l—o— p>27

=1 p
where the inner summation is extended over the set of all integer p such that
0<p<q—-1,s+q—ku; <p<kyr—1—0. Changing the order of the summation,
we get
Kuk—1=0 ptry j—s

1= Z Z , <Q[(q) )Soglu’{)u j—Ss—q+tp> wl(c}f’zu,k*p—l—a>2

g=p+1
and the biorthonormahty condition (5.1.7) implies (5.1.18).

If { = 1 in a neighbourhood of —0o and ¢ = 0 in a neighbourhood of +o00, then
we obtain the assertion of the lemma replacing ¢ by 1 — (. The proof is complete. m

5.1.3. Power-exponential solutions of the inhomogeneous differential
equation. Let 2()) be a Fredholm operator pencil of the form (5.1.1). We consider
the inhomogeneous differential equation

(5.1.21) A(0) u(t) = f(t), t>0,
where f has the form
(5.1.22) *ﬂfz —vs -

with coefficients v, € Y.

LEMMA 5.1.6. Let f be a function of the form (5.1.22). Then there ezists a
solution u of the equation (5.1.21) which has the representation

s+K1 ta.
(5123) u(t) = e/\Ot Z E(Ps+m -0
o=0
where ¢, € X, 0 =0,...,5+ k1. Here k1 = 0 if Ag is a regular point. Otherwise,

K1 18 the maximal partial multiplicity of Ao.

Proof: Let u be the function given in (5.1.23). Then by (5.1.10), we have

l stKr1 Lo

_ 1 t
et A@B) ult) = Zam@w)af D Pstmo

=0 1 =0

= Z o Z /\O L;47s+ra1 —o—q -
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Hence the equation (5.1.21) is satisfied if and only if

e | v forc =0,1 s
~o((a) — $s—0o =UL...,5
(5.1.24) ZO Q!Q( ()\O) Ps+r—o—q { 0 foro=s+ 1,...,8+ k1.
q:

By Theorem 5.1.1, the inverse 2(A)~! has the representation

AN = i P; (A= XY

Jj=—kK1
in a neighbourhood of Ag. From

e} K1+J

a)-an = 3 (Y

j=—kr1  ¢=0

1

am(q)(AO) Pj_q) (A=) =1

it follows that
K1+J 1

> ;]“!Ql(q)(Ao) Pjq=850-

q=0
Consequently, for

min(j,s)

def .
Pj = Z P—K1+j—pvpa J=1,...,8+ ks,
p=0

the left-hand side of (5.1.24) is equal to

s+K1—0 Ki1+s—o—p s+kKk1—0

> ( > %m(q)(AO)Ps—a—p—Q>U”: D Ssosp0 Up-
p=0 q=0

p=0

This proves the lemma. =

REMARK 5.1.1. The solution (5.1.23) is unique if Ag is a regular point of 2(X).
If )y is an eigenvalue, then this solution is unique up to an arbitrary solution of the
homogeneous equation (5.1.8) having the same form (5.1.23).

5.2. Solvability of the model problem in an infinite cylinder

In this section elliptic boundary value problems in an infinite cylinder C = QxR
are considered, where the coefficients of the operators do not depend on the last
variable. We call such problems model problems.

The principal idea for solving the model problem is the following. Applying
the Laplace transformation ¢ — A to the boundary value problem, we obtain a
parameter-depending problem in the bounded domain 2. Under the assumption of
ellipticity, this problem is solvable for all complex A except a countable set of iso-
lated points, the eigenvalues of this parameter-depending problem. If we apply the
inverse Laplace transformation to the solution of the parameter-depending problem,
we obtain the solution of the model problem provided that the line of integration in
the formula of the inverse Laplace transformation does not contain eigenvalues and
the functions on the right sides of the boundary value problem belong to certain
weighted Sobolev spaces.
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5.2.1. Weighted Sobolev spaces in an infinite cylinder.

Definition of weighted Sobolev spaces. Let §2 be a bounded domain in R™ with
smooth boundary 02 and let C be the cylinder

CY QxR ={(z,t) e R™! . zeQ, teR'}.

We define the weighted Sobolev space Wé) 5(C) for integer [ > 0 and real 3 as the
set of all functions u on C such that e’*u is an element of the usual Sobolev space

W3(C). The norm in W 4(C) is
(5.2.1) lullwg ) = e wllwsc) -
In particular, Lg 5(C) = W 4(C) is the Hilbert space with the scalar product

2 _
(u,v)Lm(c) = /e Bt - T da dt.
c

Furthermore, for [ > 1 we denote the space of traces of functions from Wé 5(0C)
on the boundary 0C of C by Wl 1/ 2(0(3). This space is equipped with the norm

(5.2.2) Hu“wé—ﬂl/z(ac) = inf { “’U“Wé’ﬁ(c) HETNS Wéﬁ(C), v=uon dC}.

Obviously, the space W. l 1/ 2(8(3) is the set of all functions u on JC such that

eftu € Wi%(8C), and the norm (5.2.2) is equivalent to
— 1Bt
(5.2.3) llul| = ||€? ullyi-172 5 -

The last norm is defined for arbitrary integer [. Hence it makes sense to define
Wé':@l/ 2(8C) for arbitrary integer I as the set of all functions w such that e®fu €

Wy~ Y *(8C). Equipped with the norm (5.2.3), the space Wéy_ﬂl/ ?(C) is complete for
arbicrary integer [.
It can be easily seen that the norm (5.2.1) is equivalent to

) 1/2
— 28t | D DI qy|?
(5.2.4) = ( |l§+‘:<le |Dg Dul? da dt)
¢ lal+i<

400 1
(/eQﬁtZ”D{uQJ Wi=i(9) dt)
o0 =0

LEMMA 5.2.1. Let 31 < 8 < 3. Then there are the continuous imbeddings *
(5.2.5) Wj 5, (C) "W 5,(C) € W5 5(C) C W5 5, (C) + W4 4,(C)
for 1 >0 and
(5.2.6) W, 5/2(0C) n Wy /2(8C) € Wy, /2 (8C) € Wy /2 (8C) + W 5/ (C)
forl>1.

f X and Y are Banach spaces with the norms || - | x and || - ||y, respectively, then X +Y
denotes the set of all elements z =z + y, where x € X, y € Y. X + Y is a Banach space with the
norm ||z||x4+y = inf{||z]|x + |lylly : 2 € X,y €Y, z =12+ y}, while X NY is a Banach space
with the norm ||zl xry = max(lz]lx, [z]lv).
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Proof: By the equivalence of the norms (5.2.1), (5.2.4), we have

IN

1 /(ezﬂlt + e2P2t) Z |D2 DIz, t)|? de dt

”U”%vé’ﬁ(c)
c lal+5 <1

IN

2 2 2
ez (lullw , 0 + Il (@) < 202 maxflullyy | (e,
and, consequently,
leullwg ey < € maxfluliwy , (o)

with a constant c independent of u. _
Let ¢ be an arbitrary C* function on C such that {(z,t) = 0 for t < —1 and
¢(z,t) =1 for t > 1. Then
g, o, < e (ICulbag, e + 1= Qg , o))
< e (lIcullw o) + 10 = Qullwy ) < € lullg )
This proves (5.2.5). The imbedding (5.2.6) is an immediate consequence of (5.2.5). m

Equivalent norms. We introduce a partition of unity {¢}{2°  C C°(R?) on
the t-axis subordinate to the covering of R! by the intervals k — 1 < t < k+1
satisfying the condition

(5.2.7) |DI¢u(t)| <co forteR, j=0,1,...,1,
where ¢ is a constant independent of k.

LEMMA 5.2.2. Let {(x} be a partition of unity on R with the above properties.
Then there exist positive real constants ¢y, co depending only on | and cq such that

+o00 ) 1/2
(5:28) el o < (D IGulk @) < e lulwge
k=—o00
for each u € W, 5(C). An analogous estimate holds for the norm in the space
W, 5 2(0C) if 1 > 1.
Proof: It suffices to prove the assertion of the lemma for 8 = 0. Otherwise, we

substitute eftu = v.
1) From (5.2.7) it follows that

S

+1

||Cku||%,vé(c) <c / Dg‘Dg u(x,t)|2 dx dt
k=1 Q lal+i<

=

for every k, where the constant ¢ depends only on ¢y. Hence

+o00
Z ”Ck u”%/vzl(c) <2c ||U”%V21(c) .

k=—o00
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Furthermore, since (x—1 + Cx + Ck+1 = 1 on the interval k — 1 <t < k41, we get

1 +o00 k1
ey = 5 > [ [ X D20 dear

k=—ook 10 lel+ii

5 Z (Cr— 1+Ck+<k+1)u||wl(c =3 Z ”Qc“”wl(c)

k:——oo k=—o00

2) Let u be an arbitrary function from Wzl—l/ %(8C). Then there exists an ex-
tension v € W(C) of u satisfying the inequality

FolBsey < 20l 0272 g0

Consequently, by means of (5.2.8), we obtain

+o0 Too
Z ”Cku“ivzl—l/Q(ac) S Z ”Ck’U“%Vé(C) S C% ”v”%/Vé(C) S 263 ”u”?,Vzl—l/?(ac) .
k=—00 k=—o0

On the other hand, for every k = 0, 1,42, ... there exist an extension vy € Wi(C)
of {,u satisfying the inequality

”vk”%/Vz‘(C) <2 ||<ku||f,vé—l/z(ac) :

Obviously, the functions wy = ({x—1+ Cx + Ck+1) vk are also extensions of (xu which
satisfy the estimate

2 2
o Bgiey < Gkl 17z e,

+oo

e oo Wk is an extension of

with a constant ¢ independent of u and k. Since w =}
u and wg(z,t) = 0 for |t — k| > 2, we obtain

+oo 2
"’ < | X
HUHWzt—l/z(ac) = k=_oo'wk Wi(e)

pl pt+2

1 I
-5s> //‘ ZDaDgwk’ dz dt

u==00al+5<i )71 o k=p—2

+o0 w2
< eSS oo ¢ S loul? A
H=—00 k=p—2 k=—00

The proof is complete. m

Other analogous norms in WS 5(C) and Wl ﬁl/ 2(3C) can be given by means of
the Laplace transformation L, with respect to the variable ¢

+o00
(5.2.9) a(A) = (Li—auw)(N) = / e Mu(t) dt.

—00

Let us recall some well-known properties of this transformation (see, e.g., [62]).
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LEMMA 5.2.3. 1) The transformation (5.2.9) defines a linear and continuous
mapping from C§°(R) into the space of the analytic functions on the complex plane.
Furthermore, Li—3(0su) = XA Ly \u.

2) For all u, v € C§°(R) the Parseval equality

+o00
(5.2.10) / e*Pru(t) v(t) dt = % / a(\) D(A) dA
—o00 ReA=—-p

is satisfied. Here the integration takes place over the line f_g: A =117 — 3, —00 <
T < oo. Hence the transformation (5.2.9) can be continuously extended to an iso-
morphism

Lo (R) — La(£-p),

where Lo g(R4) is the weighted Ly space with scalar product equal to the left-hand
side of (5.2.10).
3) The inverse Fourier transformation is given by the formula

u(t) = (65,00 = 5 [ ¥ aOyax.

tp

4) If u € Ly g, (R) N Ly g, (R), where B1 < Po, then & = Ly, \u is holomorphic
in the strip —(B; < Re A < —f.

Using these properties, we can prove the following assertions.

LEMMA 5.2.4. The norm (5.2.1) with | > 0 is equivalent to the norm

1 . 3 1/2
G21) = (5 [ 6Ny + NPl VI 0) d)
Re A\=—p
Analogously, an equivalent norm to (5.2.2) for 1 > 1 is
(5.2.12)
1 . 1l 1/2
= (555 [ (0BG gosrs gy W e I o) d3)
Re A=—8

Proof: 1) By the Parseval equality, the norm (5.2.4) is equal to

(%{ / EIIIAIQJ'/ > ]D;"ﬂ(m,)\)IQd:gd)\)l/z.

Rex=-g 7=V Q lal<i—j

Using inequality (3.6.14), we get the first assertion.

2) Let u be a function from WZ;/ 2 (0C). We suppose first that the support of
u(-,t) lies in a sufficiently small neighbourhood U of the point zo € OS2 for every
t € R. For the sake of simplicity, let U be a subset of the (n — 1)-dimensional hyper-
plane x, = 0. (Otherwise, there exists a diffeomorphism z — x(z) = z’ taking

U onto a subset of the hyper-plane z/, = 0, and we can consider the norm of the

function (k.u)(z’',t) = u(k~1(x'),t) instead of the norm of u.)
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We extend u = u(y,t) to a 27-periodic function with respect to the variable
Yy =(z1,...,2n_1) on R™!. Then the norm (5.2.2) is equivalent to the norm

(5213) |

Bt
He u”W;;le{‘z(Rn-l xR)

(X @ [a+21Fm g near)”,

q€Zn—1 R

where V(q,t) = €#*/(9u(q, (¢)~'t) and 4(q, t) are the Fourier coefficients of u(-,t)
(cf. formula (2.2.6)). Substituting i(g)7 — 8 = X and using the equality

(Fear V)@, 7) = (@) (Fer ) (g, (@)7 +148) = (2m) 72 (Lomni)(q,i{q)T — B),
we obtain that the norm (5.2.13) is equal to

27rz / D (@) + M+ B2 (Lomni) (g, A)m)
ReA=—p €21
Since
e (@2 + AP < (@2 + I+ B2 Y2 < e (@02 + A2,

where c1, c; depend only on [ and 3, we get the equivalence of the norms (5.2.2)

and (5.2.12) on the set of all functions u € Wl 1/2(66) with support in U x R.
If u is a function with arbitrary support, then thls assertion holds by means of a
sufficiently fine partition of unity on 8. m

Note that the expressions to be integrated in (5.2.11), (5.2.12) can be replaced
by the squares of the W(2, \) and Wé—l/Q(BQ, A) norms of 7 (see (3.6.18), (3.6.19)).

5.2.2. The operator of the boundary value problem. We consider the
boundary value problem

(5.2.14) Lu=f in C,
(5.2.15) Bu+Cu=g onaC.
Here

L=L(2,0:,0)= Y  aa;(z)028]
|a|+ji<2m
is a differential operator of order 2m with coefficients a,, j €C>®(Q), B is a vector
of differential operators

Bi(2,00,0) = Y bray(2)028, k=1,...,m+J
lal+i<pr
with coefficients b, ; € C*°(Q), and C is a matrix of tangential differential oper-
ators
Crj(,00,0) = D Chjias(@) 828, k=1,...,m+J, j=1,...,J,
la|+s<pr+T,

on JC with infinitely differentiable coefficients in a neighbourhood of 8. (02 de-
notes the partial derivative 9lol /921 . - 0gm.)

Throughout this chapter, the orders of the differential operators B, are assumed
to be less than 2m.
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REMARK 5.2.1. In the case n = 1, when the boundary 9C consists of two
parallel lines, we can admit different boundary conditions on both parts of oC.

We denote the operator of the boundary value problem (5.2.14), (5.2.15) by
A(0;). Obviously, A(8;) continuously maps the space

(5.2.16) Wi 5(C) x Wy (ac)
into
(5.2.17) WEZ™(C) x W, 272 (8c)

for I > 2m. Here WHT 1/2 (ac), W l # 1z (8C) denote the products of the spaces
WH_TJ 1/2(8C) j=1,...,J,and Wéﬁ“k_l/z(aC), k=1,...,m+ J, respectively.
5.2.3. The operator pencil generated by the model problem. Applying

the Laplace transformation ¢ — A to the boundary value problem (5.2.14), (5.2.15),
we get the parameter-depending problem

(5.2.18) L(z,0;,\)a=f inQ,
(5.2.19) B(z,0:,A) 1+ C(x,0;,\) =g on 9.

We denote the operator of this boundary value problem by 2()). For every fixed
A € C this operator continuously maps

J
(5.2.20) x 2 who) < [[ws'™*09)
j=1
into
d m+J
(5.2.21) Y wirm@) x [] wy #209), 1> 2m.
k=1

If the boundary value problem (5.2.14), (5.2.15) is elliptic, then the problem (5.2.18),
(5.2.19) is elliptic with parameter (cf. Definition 3.6.1). As a consequence of The-
orems 3.6.1 and 5.1.1, we get the following assertions.

THEOREM 5.2.1. Suppose that the boundary value problem (5.2.14), (5.2.15)
is elliptic. Then

1) the operator A(A) : X — Y is Fredholm for all A € C and isomorphic for all
A € C except for a countable number of isolated points, the eigenvalues of A(N),

2) the eigenvalues, with the possible exception of finitely many points, are sit-
uated outside a double sector

{AeC: |ReA| <6ImA|}, 6>0,

of the complex plane containing the imaginary axis.
3) If Ao is an eigenvalue of A(N\) with the geometric multiplicity I and the partial

multiplicities k1, ... ,K1, then in a neighbourhood of Ag there is an expansion
I Kk;—1 P

5.2.22 AN = —2% TN,

(5222) N7 =X Y g+ T

where Pj, : Y — X are linear operators not depending on A and I' is a holomorhic
operator function in this neighbourhood.
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REMARK 5.2.2. The operators P; ; map the space ) into the linear space of the
eigenvectors and generalized eigenvectors of 2A()) corresponding to the eigenvalue
Ao. Since every Jordan chain {(¢;,s, @ ,s)}s=0,... x;~1 satisfies the equations

s 1 ,
Ql()\o) (‘Pj,s>£j,s) = — E ;Q[( )()\0) ((pj’s_g,_(ej'ys_a), S = 0, . ,Hj — 1,
o=1 "

and A(\g) is the operator of an elliptic boundary value problem in {2, it follows by
induction that every eigenvector and generalized eigenvector is infinitely differen-
tiable. Thus, the operators P; ; map the space & into a finite-dimensional subspace
of C®(Q) x C>°(8Q)7. Moreover, we can conclude that the eigenvalues, eigenvec-
tors, and generalized eigenvectors of 2(\) do not depend on the number ! in the
definition of the spaces X and Y.

Let 24*()\) be the adjoint operator pencil defined by (5.1.3), where (-, )1, (-, )2,
are the scalar products in Lo(Q) x La(0Q)7 and Lo(Q) x La(0Q)™F7 | respectively.
Then formula (5.1.5) is valid for the operators P; s in (5.2.22), where 1); , are the
eigenvectors and generalized eigenvectors of the pencil 24*()) corresponding to the
eigenvalue )\, satisfying the biorthonormality condition (5.1.6).

5.2.4. Existence and uniqueness of the solution. From the second asser-
tion of Theorem 5.2.1 it follows that every line Re A = —( parallel to the imaginary
axis contains only finitely many eigenvalues of 2(\).

THEOREM 5.2.2. Suppose that the model problem (5.2.14), (5.2.15) is elliptic
and no eigenvalues of U(N) lie on the line Re A = —f. Then this problem is uniquely
solvable in (5.2.16) for every given pair (f,g) from the space (5.2.17) with | > 2m,
1 > max p. Furthermore, the solution (u,u) satisfies the estimate

(5:228)  lulbwy yc0) + [hptrz-r200y <  (Iflwizmier + Iglhu-s-2r20,)
with a constant ¢ independent of u and u.

Proof: 1) First we prove the uniqueness of the solution. Let (u,u) € Wé 5(C) x

Wé‘;z_l/ 2(6‘C) be a solution of the model problem. We denote the Laplace trans-

forms of u, u, f, and g with respect to the variable ¢ by 4, 1, f, and g, respectively.
Then (i, %) is a solution of the parameter-depending problem (5.2.18), (5.2.19) in
the domain 2.

By Theorem 3.6.1, this solution satisfies the estimate

(5.2.24) e M gy 1 DI i 250

<c (Hf(', )‘)“3[/21—27"(9,)\) + ||Q(")‘)”W;ﬁ‘m(aﬂ,x))

for every A on the line Re A = —f, where the constant ¢ is independent of u, u
and A. Integrating (5.2.24) with respect to A over the line Re A = —f, we get the
estimate (5.2.23). This proves the uniqueness of the solution.

2) The existence of the solution follows from the solvability of the parameter-
depending problem (5.2.18), (5.2.19) for ReA = —@ and the a priori estimate
(5.2.24). Using the formula for the inverse Laplace transformation, we get the



5.3. SOLVABILITY IN SOBOLEV SPACES OF NEGATIVE ORDER 161

representation

(5.2.25) (u(- ), u(- 1) = =— / M AN (F(5A), 35 N)) dr

for the solution (u,w). m

5.2.5. Necessity of the condition on the eigenvalues. Suppose that the
line Re A = —f contains an eigenvalue Ao of 2A(A). We consider the vector-function

(u(z,t), u(z,t)) = x7(t) " (o(z), 0(z)),

where (i, ) is an arbitrary eigenvector to Ao and {xr}r>0 is a set of smooth
functions on the t-axis satisfying the conditions

() = 1 for |¢t|<T
XTW =3 0 for [t|>T+1

with constants ¢; independent of ¢t and T'. Obviously, the norm of (u, u) in the space
(5.2.16) tends to infinity for T'— oo. However, from the equation

(f.9) A(8y) (u,u) = X" A(B; + o) X7 (t) (¢, 9)
et "8l xr(t) - A9 (M) (9, ¢)

j21

|DIxr(t)] <¢j forj=0,1,...

it follows that the norm of (f, g) in the space (5.2.17) is bounded by a constant ¢
independent of T'. Thus, we have shown the following assertion.

LEMMA 5.2.5. If the line Re A = —f contains eigenvalues of A(N), then there
does not exist a finite constant ¢ such that the inequality (5.2.23) is satisfied for all
elements (u,u) of the space (5.2.16).

5.3. Solvability of the model problem in the cylinder in Sobolev spaces
of negative order

In the previous section we obtained necessary and sufficient conditions for the
unique solvability of the model problem in weighted Sobolev spaces of positive
order. Now we show that these conditions ensure the unique solvability of the model
problem in weighted Sobolev spaces of arbitrary integer order. The extension of
the operator of the boundary value problem to weighted Sobolev spaces of negative
order will be constructed in a similar manner as for the case of a bounded domain
with smooth boundary.

5.3.1. Weighted Sobolev spaces of negative order. If | is an arbitrary
nonnegative integer, then we define the space W 4(C)* as the dual space of Wé 5(C)
equipped with the norm

(5.3.1) ||U||wgﬁ(c)* = sup {I(U, v)el v E Wé,ﬂ(c)» “'U”Wéﬁ((?) < 1} .

Here (-,-)c denotes the extension of the scalar product in Ly(C) to the product of
the spaces Wi 5(C)* and Wy 45(C). Obviously, Wi 5(C)* is the set of all functionals
v such that e =Pty € Wi(C)* and

HU”w;’ﬁ(c)* = ||€_ﬁt1’||wzl(c)*~
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In particular, the space W 5(C)* coincides with W3 _5(C). Furthermore, it can be
easily seen that the space Wl 1/ 2(8(3) defined in Section 5.2 is the dual space of
w, 2 ec) if L <.

Analogously to the spaces Wzlk which were defined in Section 3.2, we introduce

the class of the spaces Wé’g (C) with arbitrary integer [ and k, & > 0. For negative
[ this space is defined as the set of all pairs (u, ¢), where

ueW; L) and ¢ =(¢1,...,¢%) eH W, 28

If [ is a nonnegative integer, then Wé’Z(C) is the set of all pairs (u,¢) such that
u € W 5(C) and the components ¢; of the vector-function ¢ are functions from

Wl ]H/Z(OC) j=1,...,k, satisfying the condition
D,Z_lu|ac =¢; for j < min(k,1).
In particular, with this notation, we have
. WL L(C) if 1>0
L,0 _ 2,8 Z Y
Wis(€) = { Wity it 1<o.

The norm in Wéf;(C) is defined in a natural way as the sum of the norms of u and
¢; in the corresponding weighted spaces. Obviously,

1 Dl ey = 1% (@)t
Hence Wéz (C) is dense in Wé—ﬁl k(C) for arbitrary integer I, and the operator of
the imbedding Wé’;(C) c W, ﬁl *(C) is continuous.

LeEMMA 5.3.1. Let {¢x}/2° hee oo be a partition of unity on R! with the same prop-
erties as in Lemma 5.2.2. Then there exist positive constants ci, co such that

1/2
(5.3.2) 1 lullwg e < ( 5 Ikl ) < eallullwg e

k=—o00
for each u € W} 4(C)*, I > 0. Analogous estimates are valid for the norms in
l 1/ 2((3) and WQZ(C) if I, k are arbitrary integers, k > 0.
Proof: Let u, v be arbitrary elements of the spaces W{,ﬁ(C)* and Wé”@(C),

respectively. We set np = (k-1 + Cx + (k1. Using Lemma 5.2.2 and the fact that
N = 1 on the support of i, we get

+o00 +o00
[(u,v)c] l Z (Ckuav)c' =) Z (Cku’nk'”)c‘
z k=

+oo
< 3( 3 Hauliy o) (3 Il o)
k=—o00 k=—o00
< o Z Gl o) Tolhug oy

k=—o0
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This proves the left inequality in (5.3.2). Furthermore, by the Riesz theorem, for
every u € Wj 5(C)* there exists a function w € W 5(C) such that
(5.3.3) lwllwy ) = llullw je)r  and (wv)e = (w,v)wy (e

for all v € W} 4(C). Here (., Jwj () denotes the scalar product in Wj 5(C). More-
over, there exist functions wy € Wéﬁ(C), k=0,%£1,..., such that

lwrllwg ) = ISkullwg jepr  and  (Geu,v)e = (Wi V)ws ()
for each v € Wé’ﬁ(C). Since ((ru,v)e = (u,xv)c , it follows from (5.3.3) that

(ks Vg 0y = (W Cpv)e = (W, )y o) = (Mhw, Giv) REE

Hence
+o00 +o0 +o00 _
Z ”(ku”%/véﬁ(c)* = Z ”wk||$/v§’ﬂ(c)= Z (nkW,Ckwk)Wé‘ﬁ(c)
k=—o00 k=—o0 k=—o00
< 3(0X Iowld o) (X Wkl o)
k=—o00 ' k=—o00 ’
Ix 1/2
2
< clwlwge (X Mol e) -

k=—o00
This implies the right estimate in (5.3.2).
In the same way, the analogous inequalities for the norm in Wé;,l/ %(8C) can be
proved if | < 0. As a consequence we get the estimates in WéZ(C) [

5.3.2. Solvability of the formally adjoint problem. Since ord By < 2m
for k=1,...,m+ J, the vector B(zx,d;,0;)u can be written in the form

(5.3.4) B(a:,c’)m,at)u1ac = Q(z, 04, 0%) 'Dulac’

where @ is a (m+J) X 2m-matrix of tangential differential operators Qg ;, ord Qx ; <
pre+1—17, Qr; =0if up +1—j <0. Here, as in Chapters 3 and 4, D denotes the
column vector with the components 1,D,, ..., D*™~1,

As in Section 3.6, we denote by L*(z,0,, ) the formally adjoint differential
operator to L(z,0;,\). Then the operator L*(z,8,,—8;) is formally adjoint to
L(zx,0;,0;). Furthermore, let C*(z,8;,—0;) and Q" (z,8;,—0;) be the formally
adjoint operators to C(x,0;,0:) and Q(z, 0z, 0;), respectively. Then the following
Green formula (cf. (3.6.11)) is valid for smooth functions u, v, u, v with compact
supports:

(5.3.5) /L(@t)u -Udz dt + / (B(8)u+ C(O0)w, V) gy, do dt
c ac
= /u - Lt (=0 vdx dt + / (Du, P(—8;)v + Q+(——8t)y)czm do dt
c ac
+/ (H, C+(_at)y)cJ dodt

ac

Here, for the sake of brevity, we have omitted the arguments z and 8, in the
differential operators. The operator P(—0;) is a vector of differential operators
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Pj(z,05,—0;) of order 2m — j (j = 1,...,2m). By (5.3.5), the boundary value
problem

(5.3.6) LT (=8)v=f inC,

(5.3.7) P(-0)v+Qt(-8)v=g, CtT(-8)v=h ondC

is formally adjoint to problem (5.2.14), (5.2.15). We denote the operator of this
problem by 2+ (—9;) and the corresponding operator pencil (i.e., the operator of

the parameter-depending boundary value problem (3.6.12), (3.6.13)) by 2% (—\).
By the Green formula (3.6.9), the problem A+ ()) (v,v) = (£, g,h), ie.,

L*Nv=f inQ,
PMv+Q*Nu=g, C*Mu=h onon,
is formally adjoint to problem (5.2.18), (5.2.19) for each A € C.

LEMMA 5.3.2. If the boundary value problem (5.2.14), (5.2.15) is elliptic, then
At (N) is an isomorphism from
mitd ,
Wi(Q) x H W 2mtust1/2 (50
k=1

[ > 2m, onto the space

2m J
Wi Q) x [T wy 22 00) x [T we > 2 (69)
Jj=1 j=1
for all X € C except for a countable number of isolated points, the eigenvalues of
At (X). The complex number \g is an eigenvalue of A+ (N\) if and only if X is an
eigenvalue of A(N).

Proof: Since the boundary value problem (5.2.14), (5.2.15) and its formally ad-
joint are simultaneously elliptic, the first assertion follows immediately from The-
orem 5.2.1. Furthermore, since the problem At () (v,v) = (f,g,h) is formally
adjoint to (5.2.18), (5.2.19) for every fixed A € C, the second assertion is a conse-
quence of Theorems 3.4.1 and 5.2.1. =

Using the last lemma and Theorem 5.2.2, we get the following assertion.

COROLLARY 5.3.1. Suppose that the model problem (5.2.14), (5.2.15) is ellip-
tic and no eigenvalues of A( ) lie on the line Re A = — (. Then the operator AT (—8;)
of the formally adjoint boundary value problem (5.3.6), (5.8.7) is an isomorphism
from

m+J
(5.3.8) Wi _5(C) x H W, g2 ey
onto the space
(5.3.9) WL (C) x Hw’ 2mti=1/2(50) x Hw’ mem 290,

j=1
forl>2m, 1> 2m+max7j.
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5.3.3. Extension of the operator of the boundary value problem. For
I > 2m the operator 2(9;) can be identified with the operator

(5.3.10) WEZ™(C) x Wy 2(8C) 5 (u, Dulac,u)
m -
K (L(at)u, B(@:)uloc + C(0,)u) € WE™(€) x Wy £ (60).
Our goal is the construction of the extension of the operator (5.3.10) to the space
(5.3.11) WEET(C) x WyF 12 (8C)

with | < 2m. We start with the extension of the operator L.
Let | be an integer, 0 < I < 2m. We write the differential operator L in the
form

L(2,05,0) = Y. 050 La;(x,0:,0,),
|a|+5<2m—1

where L, ; are differential operators of order < I. Then the formula

/Lu-ﬁdxdt = Z Lo ju- (—=0,)%(—0;) vdxdt
c la|+5<2m—1 c
+ Z /DJ Y- Py (x, On, B)vdadH-Z/D] Lu - P v do dt
I=l+l5e I=15¢

is valid for all u,v € C§°(C) (see Lemma 3.2.1). Here P; are the same operators
as in (5.3.5) and P, ; are differential operators of order < 2m — j with coefficients
depending only on x such that the functional

v — Z/D,{_lu - P jvdo
=150

is continuous on W2m l(C) for arbitrary u € W} 5(C).
Analogously to Lemma 3.2.2, the following statement holds.

LEMMA 5.3.3. The operator

(5.3.12) W2H2™(C) 3 (u, Dulac) — Liw,dx,0,)u = f € W3 5(C)
can be uniquely extended to a continuous operator
(5.3.13) Wyi™(€) 3 (u,0) — f € W3T5'(C)", 1< 2m.
The functional f = L(u, $) in (5.8.13) is given by the equality
2m
(5314) (.f’ U)C = (’U,, L+($, az‘a _8t)v)c + Z (d)]a P]'(ZE, 8507 —at) U)BC
j=1

if 1 <0 and by

(5315) (fiv)e= Y, Lo ju- (—07)2 (=8, )iv dz dt

la|+ji<2m—1 ¢

2m l
+ Z (¢;,P;(x,0:,—0)v) 5 + Z (D) u, Pyv) g
j=1

j=l+1



166 5. ELLIPTIC PROBLEMS IN AN INFINITE CYLINDER

if 0 <1 < 2m, where v is an arbitrary function from W2m l(C) Here (-,-)¢ denotes
the extension of the scalar product in Lo(S2) both to W2m Z(C) X W2m l(C) and
Wyt ! ﬁ(C)* XW,, b 5(C), while (-, -)ac is the extension of the scalar product in Ly(0C)
— i
to Wy T2 (8C) x W, 712 (ac).
By (5.3.4), the operator

WH2m(Q) 5 (u, ) — Qo € Wy 272(00), 1< 2m,
is a continuous extension of the operator
Wé%m(C) (u Du|3c) — Bulgc € Wzﬁ 1/2(66'), > 2m.
Consequently, we obtain the following theorem.

THEOREM 5.3.1. The operator (5.3.10) can be uniquely extended to a linear
and continuous operator

(5.3.16)  2A(8;) : Wé’j,m(C) W 250y — W= 2m0(c) y Wz,g 1/2(80)
with | < 2m. This extension has the form

(U’Q’E) - (L(U,Q)a QQ + C@) ’
where L is the operator (5.3.13) given in Lemma 5.3.3 and Q 1is the matriz in

(5.3.4).

REMARK 5.3.1. If (u,¢,u) € Wy (C) x Wy 7 /*(8C), 1 <0, then the func-
tional f = L(u,¢) € W2m Z(C)* and the vector—functlon g = Q¢ + Cu satisfy the
equality
(5.3.17) (f,v)e + (g, v)oc = (u, L (=8)0) ¢ + (@, P(~3) vloc + @*(~00)v) 5

+ (u, C*(=0:) v) 5

for arbitrary v € Wzm l(C) and v € W, H;LH/Q(@C). Consequently, in the case

1 < 0 the operator (5 3. 16) is adjoint to the operator
(v,2) = (LT (=0¢)v, P(—0¢)vlac + QF (=0:)v, CF(=8r)v)

l+u+1/2(

of the formally adjoint problem which maps Wi™, l(C) X W, oC) into

H —z+J 1/2 (8C) x W—l 7'+1/2(6C)‘

5.3.4. Bijectivity of the operator of the boundary value problem. We
prove now that the operator (5.3.16) is an isomorphism for arbitrary integer [ if the
conditions of Theorem 5.2.2 are satisfied. For the extension of Theorem 5.2.2 to all
integer values of [ we need the following lemmas.

LEMMA 5.3.4. If L is elliptic, then there exists a constant ¢ such that

5 1631mt-7+172(ey < € (Iulhago o) + IL(8E) (w, D)lhgamocy)

7j=1

for all (u, ) € ~éfgm(C)
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Proof: Let {¢:};2° .. € C(R?) be a partition of unity on R! subordinate to

k=—o00

the covering of R! by the intervals (k — 1,k + 1) satisfying the condition
|DI¢h(t)] <¢; forteR, j=0,1,...,

where c; are constants independent of k and ¢. Furthermore, let n; = (x—1+Ce+Crt1
for K =0,%1,.... Then Lemma 3.2.3 yields

2m
Z; 1<k 1l yi-3+1/2(pe) < € (||77ku||wztv0(c) + e L(8r) (u, Q)HWZL—M,O(C))-
=

Since the coefficients of L, B, and C are independent of ¢, the constant ¢ in this
inequality can be chosen independent of k. Furthermore, by our assumptions on (y,
there exist constants c¢1, ¢z independent of k& such that

e lIGk@sll 3412 o0y < €77 1€k5llyi—s+172(50) < €2llCuillyi-s+12 o)

for j =1,...,2m. Analogous inequalities are valid for the norm of n,u in Wé% ©)

and the norm of 7y L(0;) (u,¢) in Wé;fm’o((?). Hence there exists a constant c
independent of k£ such that

2m

D16ty < (Imelsse e, + Im L) (0, Dszmaey )

Summing up over all integer k£ and using Lemma 5.3.1, we get the desired inequal-
ity. m

LEMMA 5.3.5. Suppose that the boundary value problem (5.2.14), (5.2.15) is
elliptic. If (u,¢,u) € Wé%m(C) X Wéj';@l_l/g (9C) is a solution of the equation
Q[(815) (ua?a @) = (fv Q)

and (f,g) € Wé,—ﬂzmH’O(C) X Wé;aﬁﬂ/?(a(?), then (u,$,u) belongs to the space

~éj;31’2m(6) X Wé;ﬁl/ 2(8C). Furthermore, (u, ¢,u) satisfies the estimate

(5318) (w8, 0)llern0 < € (I Ipg-meoey + lysoars ) + 10 8,0 e).

where ||-||; g denotes the norm in (5.3.11). The constant c in (5.8.18) is independent
of (u, ¢, u).

Proof: Let (i, ni be the same functions on the t-axis as in the proof of Lemma
5.3.4. From the assumptions of the lemma it follows that (x(u, ¢, u) € Wé’zm(C) X

WQHI_I/Z((?C) for every index k = 0,+1,... . Consequently, by Lemma 3.2.4, we
get Cu(u, ¢,u) € WErH?™(C) x Wit ™+1/2(8C) and

(5.3.19) [I¢k(u, 9, y)||12+1,0 < c (||Ckf||$j/é—2m+1,o(c) + IICkglla,;-ng

+ i, 6, )11 ),

where the constant c is independent of (u, ¢, u). Since the coefficients of the opera-
tors L, B, and C do not depend on the variable ¢, the constant ¢ in (5.3.19) is even

(ec)
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independent of k. Due to our assumptions on the functions (i, there exist constants
¢1, ¢o independent of k such that

(5.3.20) e |16k (u, &, w)llio < €™ 1|¢k (u, &, w)llip < ez Gk (u, 6, w10

for all (u,d) € W2™(C), u € WHZ=2090). Analogous inequalities are valid for f
z 2,8 2,8
and g. Consequently, (5.3.19) implies

(6:321) 160 wWlErs < e (IG5 amsnoey + 16l e

+ (8,0 35).

Summing up over all integer k and using Lemma 5.3.1, we get (5.3.18). m

(ec)

REMARK 5.3.2. By Lemma 5.3.4, the term ||(u, ¢, u)||; g on the right-hand side
of the estimate (5.3.18) can be replaced by

”'U«HW;%(C) + ||y'”Wé-,+ﬁI_1/2(3c) ’
since the norm of ¢ can be estimated by the norms of u and f.
Now it is easy to obtain the following result.

THEOREM 5.3.2. Suppose that the boundary value problem (5.2.14), (5.2.15)
is elliptic and no eigenvalues of A(N) lie on the line Re A\ = —(. Then the operator
(5.8.16) is an isomorphism for arbitrary integer [.

Proof: For I < 0 the operator 2(d;) is adjoint to the operator

A (-0)) - wmlUxMi?“W%)

— Wyt ,(C) % 1‘[ Wy SR ey x wy A ac).
j=1
of the formally adjoint problem (see Remark 5.3.1). According to Corollary 5.3.1,
the last operator realizes an isomorphism for arbitrary integer [ <0, [ < —maxT;.
This proves the validity of our assertion for [ < 0, ! < —max 7;. Using the regularity
assertion of Lemma 5.3.5 and the uniqueness of the solution of the equation

2A(0) (uaéaﬂ) = (f, 2)

in the space (5.3.11) for f € W'~ 2m(C), g€ Wé:@ﬁ_l/z(a(,’), 1> 2m, l > maxpy

(see Theorem 5.2.2), we obtain the validity of the theorem for arbitrary integer [. m

5.4. Asymptotics of the solution of the model problem at infinity

In Sections 5.2, 5.3 it was shown that the model problem is uniquely solvable
in Wé " (C) x Wé:zzl_l/ %(8C) if no eigenvalues of the operator pencil 2 are situated
on the line Re X = —f;. Now we study the behaviour of the solution at infinity.
We assume that the functions f and g on the right sides of the model problem be-
long also to weighted Sobolev spaces with another exponent G2. Applying Cauchy’s
residual theorem, we show that then the solution is the sum of a linear combination
of finitely many power-exponential solutions of the homogeneous model problem
and a remainder belonging to a weighted Sobolev space with the exponent [s.
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Furthermore, we derive a formula for the coeflicients of the mentioned power-
exponential solutions.

5.4.1. Decomposition of the solution. Formula (5.2.25) in the proof of
Theorem 5.2.2 gives a representation for the solution of the boundary value problem
(5.2.14), (5.2.15) in terms of the Laplace transformation £, and its inverse.
Naturally, this solution depends on the number 8. We assume now that the right-
hand side (f, g) belongs to the space

2
(5.4.1) N (Wéjgfm(C) x Wy 27t 2(3(:)) ,

=1

where l1,ls > max(2m, 1 +1,... , tm+g + 1). Then by Theorem 5.2.2, there exist
two solutions (u,u) and (w,w) given by formula (5.2.25) with the integral over the
lines Re A = —(; and Re A = —f3,, respectively. Our goal is to obtain a relation
between these two solutions. To this end, we prove the following lemma.

LEMMA 5.4.1. Let (f,g) be an element of the space (5.4.1), where 31 < B2 and
l; > max(2m,u1 + 1,... , thmys +1). Then the norm of

—B1+ip
(5.4.2) (ol () [ U (Flo ), () da

—B2+ip

in the space Ly (€2 x (—N,+N)) x Ly (8Q x (—N, +N))J, where N is an arbitrary
positive number, tends to zero as p — oo.

—B1+ip

vy, t) = / A2 () (F(, ), §(z, N)) dA
—B2+ip
and
N —B1+ip
10pl12 5 x (- v 4.3y < (B2 — B1) // / e 2A:(N) (f, 9))? dA dz dt
N @ —Bitip
—Bi1+ip
<o (- )V [ [1900) (72,2, 260 ) daar
—B2+ip £

By Theorem 3.6.1, the inequality

120 (F. D)) < e A7 (1o + 1812 - 1)
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is valid for all A in the strip —f82 < Re A < —(; with sufficiently large imaginary
part. Hence we obtain

/ 1al12, v,y

c1

96N B2 —PB+ica
c : ,
< o (B ) / / (1 B3 np 181 msr2 g, ) 1N 48
—B+icy
B2
= 2cN (B2 — B1) e?N1P:| szl/ (||f“$/v;;fm(0) + ”g”ivé’ﬁ"l“(ag)) dp
B1

/ —2l
<ce (”f”wl 2'"(C)nwl 2m(c)‘|‘||g|| l e 1/2(aﬂ)nwl e 1/2(80)>

for sufficiently large c¢; and cp > c;. Here the constant ¢’ depends only on 31, B2,

and N. Consequently, the norm of v, in Ly(£2 x (=N, N)) is square integrable with

respect to p over the interval (¢, +00). Thus, this norm tends to zero as p — oo.
Analogously, by means of Theorem 3.6.1, we get

2
2,17, (0% (= N4 N7

—B1+ip
S 2N (ﬂZ - /31) 62N|ﬁ2| / ||Q[2()‘) (}Z(’ )\),Q(» /\))”%2(89)1 dA
—PB2+ip
—B1+ip
-1 () f12 S 112
< [ (Mg + 1812w g ) O
—B2+ip
with a constant ¢ independent of p. This yields
/” 20 00x (- N+ )7 AP
B2 —p+ioo
-1 F112 - 112
<cet [ [ (1B + 18 ) 10N 89
—fB—1i00
B2
_ -1 2 2
= et [ (1B ygim ey + 0l gy ) 45
B1

Hence the norm of v, in Ly(09 x (—N,N))” is also square integrable over the
interval (1, +00). From this it follows that the norm of v, tends to zero as p — co.
The proof is complete. m

Le A, be the eigenvalues of the operator pencil 2()\). Furthermore, let

() M



5.4. ASYMPTOTICS OF THE SOLUTION AT INFINITY 171

be canonical systems of Jordan chains of A(\) corresponding to the eigenvalues \,,.
Then the pairs

S

1 g
(543)  (wga(@1), w502, 0) =D 87 (@) (@), 0 o (@)

o=0 '
are power-exponential zeros of the operator 2(9;) (see Lemma 5.1.3).

THEOREM 5.4.1. Suppose that the model problem (5.2.14), (5.2.15) is elliptic
and no eigenvalues of A(N) lie on the lines ReA = =1 and Re A = =2, /1 < Da.
Let Ay, ..., AN be the eigenvalues of the pencil A(X) in the strip —82 < Re A < —0;.

If
(5.4.4) (u,u) € Wit (C) x Wit =12 (ae)

is a solution of the boundary value problem (5.2.14), (5.2.15) with the right-hand
side (f,g) from the space (5.4.1), then there is the representation

N ,
(545) (’u,,_’l_l,_) = Z Cuj,s (uuyj’s s g“’j’s) + (w,w),

where ¢, j s are constants and (w,w) belongs to the space
(5.4.6) Wiz, (C) x Wia=™ 2 (8c).

The constants c,, j s depend on f, g and on the choice of the above mentioned system
of Jordan chains.

Proof: As it was shown in the proof of Theorem 5.2.2, the solution (u,u) has
the form (5.2.25), where (8 has to be replaced by ;. From the condition on f and
g it follows that f(z,) and g(z,-) are holomorphic in the strip —8; < Re A < —f.
Hence the only singularities of the function e 2(\)~!(f,§) in the strip —F; <
Re X < —f3; are the poles of A(A\)71, i.e., the eigenvalues A1, ..., An of A(X).

Let p be a sufficiently large positive number such that no eigenvalues of (\)
are contained in the set {A € C: —f3; < Re A < —f4, [Im | > p}. Using Cauchy’s
formula, we get

—Bi+ip

_ 1 At 1 y

647 ww = oo tm o [ MANT (e, gle N A

—B1—ip
—B2+ip —B2—ip —B2+ip

- an( / d+ / dh— / ...d/\)

271 p—oo

—B2—ip —B1—1ip —B1+ip

N
+ 3 ReseMA) T (f(2, 1), 5(3, V)|

p=1

'k



172 5. ELLIPTIC PROBLEMS IN AN INFINITE CYLINDER

Im A
Lo

—f2 —B1 Re A

L-p

The first integral on the right of (5.4.7) tends to the solution (w,w) from the
space (5.4.6) as p — 00. According to Lemma 5.4.1, the second integral and the
third integral tend to zero. Hence (5.4.7) yields

(5.4.8) (u,u) = (w,w) + Z ReseM AN (F(, ), 8(-, A))

u=1 A=A,

It remains to calculate the residues in (5.4.8). First we note that the residues are
elements of the kernel of 2(8;), since

(@) Res e AN~ (F(, 0,3 N) |

=

= Res(0}) e/\tm()‘)_l (f(’ A)’g(vA)) ‘A:A = Rese™ (f(7 ’\)’Q(’)\)) e

and ( f, g) is holomorphic in a neighbourhood of A,. Using the representation

Iy Kp—1 P(N)
-1 _ 7,8
N =D D, oy T
j=1 s=0

for the inverse operator pencil 2()\)~! in a neighbourhood the eigenvalue A, (see
Theorem 5.2.1), we obtain

Rese™ A(N) ™ (F(, 1,3, )| _
d K‘,,']'—l

=3 tim ()T (203 (- a) B (0,80, 0))

— (’I(“’#,j - 1)' A—=X, \dA 5—0

I, kp—1

1 : .
:eAutZ Z ;tS((puJ,s,gu,J,S)

with certain p#9* € C°°(Q), *7* € C>°(8Q)”. Hence the residues in (5.4.8) are
elements of the sets N (2(0:),\,) of the power-exponential zeros of 2(9;) corre-
sponding to the eigenvalue A,. By Lemma 5.1.4, the pairs (5.4.3) form a basis in
the space N (2(0;), A\,). This proves the theorem. m



5.4. ASYMPTOTICS OF THE SOLUTION AT INFINITY 173

By means of Theorem 5.3.2, we can prove the analogous assertion for the gen-

eralized solution (u, ¢,u) € élbr‘)lm (C) % élgl =1/ %(8C) of the equation
(5.4.9) A(0r) (u, ¢,u) = (f,9)

if the right-hand side (f, g) belongs to the space
2
(5.4.10) ﬂ (Wy2m0(c) x Wy (00))

with arbitrary integer ll, lz.

THEOREM 5.4.2. Suppose the model problem (5.2.14), (5.2.15) is elliptic, no
eigenvalues of A(N) lie on the lines Red = —f1, Red = —f9, and Xq,... , Ay are
the eigenvalues of (M) in the strip —B2 < Re A < —f1. If

(5.4.11) (u, ¢, u) € WEZ™(C) x WiiaT~ 2 (aC)

is a solution of the equation (5.4.9) and (f,g) belongs to the space (5.4.10), then
there is the representation

N L k=1

(6.4.12)  (u,¢,u) = Z Z Z Cngs (Wpgos s Dupjsloc ,uy, 5 5) + (W, ¥, w) .

p=1j=1 s=0

Here c,, j s are constants, u, j s andu,, ; ; are given by (5.4.3), and (w, 1, w) belongs
to the space

5.4.13 WEE™(C) x Wyi= ™2 (8c).
2,82

Proof: There exists a sequence {(f(’“),g(k))}k=1,2,,_, C C§°(C) x Ccge(ac)m+7
which converges to (f, g) in the norm of the space (5.4.10). Let I be the maximum
of ly,l0,2m,p1 + 1,... ,mys + 1 and let

(5414) (u ) c WQ " (C) % Wl-I-T 1/2(86),
(5.4.15) (w(k),l_u_(k)) c Wz,ﬂz (€) x Wl+‘r 1/2(36)

be the uniquely determined solutions of the boundary value problem (5.2.14),
(5.2.15) with the right hand sides f* and g(*). From Theorem 5.3.2 it follows

that the sequence {(u*), Du®)|ac, ul®))} converges to (u, ¢, u) in the space (5.4.11),

while the sequence {(w®), Dw®)|5c, w*))} converges to the uniquely determined
solution (w, 1, w) of the equation (5.4.9) in the space (5.4.13). Hence the sequence

{(u®, Du®) |5, u®) — (w®, Dw® |50, w*)} 1o .
converges to (u,$,u) — (w, ¥, w) in the space

<Wé1,ﬂ21m(c) % Wg;-lr 1/2(8C)) ( ézme(C) % le-I-T 1/2(66)).

By Theorem 5.4.1, the difference (u(®), u(*)) — (w®), w(*)) lies in the linear span of
the functions (5.4.3). Therefore, (u®), Du®|sc,u®)) — (w*), Dw® |5z, w*)) and
the limit (u, ¢,u) — (w, %, w) lie in the linear span of the triples

(5416) (Up,j,s ) ,DUHYJ':Slac ) up.,j,s) )

w=1,... ,N,j=1,...,I,,8=0,... ,k,; — 1. This proves the theorem. m
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As immediate consequences of Theorems 5.3.2 and 5.4.2, the following asser-
tions hold.

COROLLARY 5.4.1. Suppose that the model problem (5.2.14), (5.2.15) is ellip-
tic and there are no eigenvalues of the pencil 2(A\) in the closed strip between the
lines ReA = —p1 and Re X = —f3,. Then every solution (u,$,u) € W, l"zm(C) X
Wélgf 1/2((96) of the equation (5.4.9) with (f,g) from the space (5.4.10) belongs

to the space le’zm(C) X Wéz);zl_lm(@(?).

COROLLARY 5.4.2. Under the assumptions of Corollary 5.4.1, the operator
A(8;) realizes isomorphisms

ﬁ (Wl“Zm(C) < W, l+T 1/2 (aC) ) R ﬁ ( I; —2m0 ) x Wéi,l;lﬁ_l/Q(aC)>

=1 =1

and

(Mm@ > Wig= 2 00) + (Wi () x w2 (00))
s (Wm0 x WS 00)) + () x W00 ).

5.4.2. Formulas for the coefficients in the asymptotics. As in the pre-
vious subsection let

{05, 0N i1 L0, 1

be canonical systems of Jordan chains of 2A(\) corresponding to the eigenvalues

M. Furthermore, let { ('d)( ; ,_g"‘s))} be canonical systems of Jordan chains of 2*(\)

corresponding to )\ which satisfy the ”biorthonormality condition” (cf. formula
(5.1.6))

o pts+l
1 (
(5.4.17) Z Z q' q)( ) (‘p]p+3+1 qa£5p)+5+1 q) (¢k“3'—p7¢ka p))
p=0 g=p+1

= 04,k 65,1-:“‘;@—1—0’

forjk=1,...,1,,8=0,... ,k,;—1,0=0,... Kk, — 1. Here (-,-)2 denotes the
scalar product in Ly () x Lo (0Q)™*.

We recall some properties of the operator 2*(\) = 2(A\)* which were given
in Section 3.3. As before, we consider 2()\) as a linear and continuous operator
from X into ), where X and ) are the spaces (5.2.20), (5.2.21), respectively. Then
the adjoint operator 2*()) of A(\) continuously maps Y* into X*. Moreover, the
restriction of A*(\) to the space

(5.4.18) D(9) x Wi~ 2m+u+1/2(6g)
with g > 0 continuously maps the space (5.4.18) into
(5.4.19) Dg—2m,2m(ﬂ) % Wg—2m—1+1/2(aﬂ)

(see Lemma 3.3.1). If the boundary value problem is elliptic, then every solution
(v,v) € Y* of the equation

A*(X) (v,0) = (F, h)
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with F € DI7>™*™(Q), h € qu_zm_frlﬂ(aﬂ), g > 0, belongs to the space
(5.4.18). Furthermore, for ¢ > 2m the functional F € DZ"?™>™(Q) has a unique
representation

(5.4.20) (u, F)a = (v, fla + (Du,g)aa,  uv€ Wi™(Q),

where f € Wi *™(Q), g € H2m WI=2mH=1/2(5Q), and (v, v) is also a solution of
the formally adjoint boundary value problem

LT (2,0, \)v=f inQ,

P(z,0;, ) v+ Q" (2,0, \)v=g, C'(z,0;,\)v="h ondQ
(see Corollary 3.3.1). In particular, the equation A*(\) (v,v) = 0 with (v,v) € Y*
implies v € C®(Q), v € C*°(0Q)™*/, and A+ ()\) (v,v) = 0. Conversely, by Lemma
3.3.1, any solution (v,v) € C®(Q) x C=(9Q)™*” of the equation A+ ()\) (v,v) =
0 is also a solution of the equation 2*(A) (v,v) = 0. Thus, the eigenvalues and

eigenvectors of the pencils 2* and 2" coincide. We prove the same assertion for
the generalized eigenvectors.

LEMMA 5.4.2. Suppose that the boundary value problem (5.2.18), (5.2.19) is
elliptic. Then the eigenvectors and generalized eigenvectors of UA*(\) belong to
C>(Q) x C(8N) ™. Furthermore, (Yo,%0), .- , (s, ¥s) is a Jordan chain of
A*(X) corresponding to the eigenvalue Xﬂ if and only if it is a Jordan chain of
AT () corresponding to the same eigenvalue.

Proof: Let g be an integer, ¢ > 2m. We denote by S, the operator

2m
Wq 2m ) ~ H W2q_2m+]_1/2((99) 5 (f;g) S Fe Dg—2m,2m(ﬂ),
Jj=1
where the functional F' is defined by (5.4.20). The operator Sy is bijective. Fur-
thermore,

(5.4.21) A*(N) (v,v) = S, AT (N) (v,v)

for (v,v) € WI(Q) x Wy 2711-'-/'L+1/2(<9Q). Let (v0,%0),.-- ,(s,%s) be a Jordan
chain of A*()\) correspondmg to the eigenvalue ). From Corollary 3.3.1 and from
the equation

q

(5'4'22) ( u) ¢aa¢a = ' dwm* |>\ /\ ("/’U—ja%a—j)
j=
we conclude by induction that (¢, 1,[)0) C>®(Q)x C>®(0Q)™* foro = 0,1,... ,s.

Furthermore, from (5.4.21), (5.4.22) and from the bijectivity of the operator S, it
follows that

1 &

Z F E)\_JQI+()\) N (7/10_]‘,%0._]‘) =0 foro= O, 1,...,s
j=0 s

Consequently, (19,%0),- .. ,(¥s,¥s) is a Jordan chain of 2t (X) corresponding to

the eigenvalue X#. Analogously, it can be shown that every Jordan chain of AT ())
is a Jordan chain of A*(\). m
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By Lemma 5.4.2, the given system {(1,03(‘;), ( ))} of Jordan chains of 2A*(\) is
also a canonical system of Jordan chains of 2% (A ) corresponding to the eigenvalue

X”. Consequently, the pairs

S

ut Z t7 (), (z), 9%, (z))

o=0 7
are power-exponential zeros of the operator 2% (8;) and the vector-functions
S
X 1
(54.23)  (vujs(®@0), ,55(2,0)) = € D0 = ()7 (W), (2), B, (@)

|
=0 o!

are power-exponential zeros of the operator A (—8;) of the formally adjoint bound-
ary value problem (5.3.6), (5.3.7).

THEOREM 5.4.3. Suppose that the conditions of Theorem 5.4.1 are satisfied.
Then the solution (u,u) admits the decomposition (5.4.5). The coefficients c, ;s in
(5.4.5) are determined by the formula

(5424) Cu,j,s = (f, 'U#,j,nu,j——l—s)c + (g’ Q;L,j,mu,j—l—s)ac :

Proof: In accordance with the notation in Section 5.1, we introduce the vector-
functions

Kp,j—1

L,

Buj(et)= Y (e, 1ma@), 50, (@),
s=0 '
"l B )

‘Illh]'(x’t) = Z ; (_t)s ( jffﬁu’j—l—s(x) ) gj;ffe#d—l—s(x) ) .
s=0 '

Let ¢ = ((t) be a smooth function on R! equal to zero in a neighbourhood of —oco
and to one in a neighbourhood of +oco. Then (5.4.5) yields

N T K —
A(3) (¢ (u,u) — =33 Z Cpjis ( (t) eret i =1 cpw-) .
p=1j=1 s=1
Applying Lemma 5.1.5, we get
+oo 3
(5425) / <m(at) (((Uﬁ y) - C(W,w)) ) 6_>\Ut (_6t)a \I’v,k >2 dt = Cuk,o

forv=1,... ,N, k=1,...,I,, 0 =0,... Kk, % — 1, where again (-, )5 denotes the
scalar product in L2 (Q) x Ly (0Q)™*. Since

2
Clw,w) € () (Wi, (©) x Wi 2(30))
i=1
and e~ Mt (—0:)° ¥, 1, belongs to the dual space of

2

WS () x Wy 52 ac))
\Bi

i=1
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we have
400
[ (2000 ¢t 7 a7 ), a
_w+w
= / <C(w,lﬂ) ’m*(_at) e——X,,t (—315)0 wy’k>2 dt = 0.

For the same reason, we obtain
400
[ (m@)a-ww, e (-0 w), dt =0,
Hence (5.4.25) implies
+o0
oo = / (20 (ww), €™ (=87 W)t
—0Q0
+o0
_ / ((1,9), ™ (<87 Wu)_d.
—o0

This proves the theorem. m

COROLLARY 5.4.3. The coefficients c,, ;s in Theorem 5.4.2 are given by for-
mula (5.4.24).

Proof: Let {(f®), g®*N}po12. € C§(C) x C§2(AC)™ Y be a sequence which
convergences to (f,g) in the norm of the space (5.4.10). Furthermore, let [ be the
maximum of Iy, 1, 2m, w1 +1,... , ttme s + 1 and let (u®, u®) and (w®,w®)) be
the uniquely determined solutions of the equation 2(8;) (u,u) = (f*, g(®)) in the
spaces (5.4.14) and (5.4.15), respectively. Then Theorem 5.4.1 yields

(u(k)’ Du(k)la&ﬂ(k)) = Z c(k) (u#,j,S»Duu,j,sﬂ_lfp,j,s) + (w(k)a Dw(k)|80,w(k))a
n

1358
2JrS
and by Theorem 5.4.3, the coefficients &F) are given by the formula

I'L?]’s
k
CEL,;‘,S = (f(k) » Uu,j,ny,j—l—s)c + (g(k) ) Q#,j,,{u,]—l-—s)ac .
For k — oo the triples (u(k),Du(k)|3c,g(k)), (w®, Dw®|5e, w*)) tend to (u, ¢,u)
and (w,9,w), respectively, whereas cikgs tends to the coefficient c, ;s given by
formula (5.4.24). This proves our assertion. m

5.4.3. A formula for the coefficients in terms of the classical Green
formula. Now we consider the boundary value problem

(5.4.26) L(z,0;,0)u=f inC,
(5.4.27) B(z,0,,0)u=g  ondC,
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where L(z,d;,0;) is an elliptic differential operator of order 2m with smooth coef-
ficients depending only on the variable z and B(z, d,, ;) is a vector of differential
operators By(x,0;,0;), k = 1,...,m, of order p; < 2m with smooth coefficients
depending only on z. Furthermore, we suppose that problem (5.4.26), (5.4.27) is
elliptic and the system of the boundary operators By, ... , By, is normal on 9C (see
Definition 3.1.4). Then this system can be completed by operators By (z, Oz, d:),
k=m+1,...,2m, of order puyr < 2m to a Dirichlet system of order 2m on 9C.
Obviously, the operators By,11,...,Bam can be chosen in such a way that the
coefficients of these operators depend only on the variable z. As it was shown in
Section 3.1, the following classical Green formula is valid for u, v € C§°(C) :

(5.4.28) / (8) u- vda:dt+z / Bi(0)u- By, (=0)vdo dt

k= =15¢
/UL+( 8t)Udﬂ3dt+Z/Bk+m at)u B ( Bt)vdodt
c k=15c

(for the sake of brevity, we have omitted the arguments z, 9, in the operators L,
L*, By, and Bj). Here Bj(z,0s,0:),... ,Bj,,(x,0z,0;) are differential operators
with smooth coefficients depending only on the variable z which form a Dirichlet
system of order 2m on OC. The boundary value problem

Lt (z,0;,—8)v=f inC,

By (z,0z, —0:)v = gk ondC, k=1,...,m,
is said to be formally adjoint to the problem (5.4.26), (5.4.27) with respect to the
Green formula (5.4.28). We denote the operator of this problem by A} (—9;) and
the corresponding operator pencil by 2} (—\).

Naturally, the boundary value problem (5.4.26), (5.4.27) is contained in the

class of boundary value problems considered before. Therefore, additionally to
the operator A} (—8;), there exists the operator 2A*(—9;) of the formally adjoint

problem with respect to the Green formula (5.3.5). There are the following relations
between the kernels of the operators At (—8;) and AT (—8;) (cf. Lemma 3.1.1).

LEMMA 5.4.3. Let T(—8;) be the vector (Bl 1(=8),... B, (=0;)). Then
At (=8;) (v,0) =0
if and only if
AT (—0y)v =0 and v = T (—8)v|ac -

As a consequence we obtain the following relation between the eigenvectors and
generalized eigenvectors of the operator pencils A1 (A) and AT (\).

LEMMA 5.4.4. Let (o,%0), ... ,(¥s,%s) be a Jordan chain of AT (\,) corre-

sponding to the eigenvalue \,. Then vy, ... s is a Jordan chain of AL (X) corre-

sponding to X,L and the vector-functions o, ... ,%s are determined by the equality
o

(5.4.29) Yo = Z 7 TN o |,

Jj=0
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with TO(X) = d?T(X)/dN. Conversely, every Jordan chain 1y, ... s of AT (N)
generates a Jordan chain (Yo, %o), - .- , (¥s,1s) of AT (X), where the vector-functions
Yo, .-, Ps are given by (5.4.29).

Proof: Suppose that (10,%0), ..., (¥s,%s) is a Jordan chain of A*(A) corre-
sponding to the eigenvalue X Then by Lemma 5.1.3,

vv)—e)‘tz 'l.bs cn'l/}s a)

is a solution of the equation 2+ (8;) (v, y) = 0 and Lemma 5.4.3 yields 2 (9;) v = 0.

Consequently, 9, . .. , s is a Jordan chain of 2} (\) to the eigenvalue A,. Moreover,
by Lemma 5.4.3, we get
Z ; %3_0 = e_A“ty = G_A“t T(Bt)v ‘BC 8t )\ ¢ Z ’l/)s —c
o=0 0—0
s 1 o ]
— — —70 Y il
= T(%, +at);0 . —Zﬂfﬂ(mat;a,ws_a o
_ (4
- ZOU'ZJ'T]()\ Vomi=e

This implies (5.4.29). Analogously, we can prove that (1o, %0),. .., (¥s, %) is a
Jordan chain of AT (X) if 4o,... ,%, is a Jordan chain of AF () and o, ... , s
satisfy (5.4.29). m

Let A, be the eigenvalues of the pencil () and let

{30(“)}] =1, Iy, 5=0,... kp,—1 5 {(1113(-,‘2), (”))}] 1, dp, 5=0,... iy —1

be the canonical systerns of Jordan chains of 2(\) and Q(*()\) introduced in the
previous subsections. Then by Lemmas 5.4.2 and 5.4.4, the functions 1,/)(” ) form a

canonical system of Jordan chains of 2 ()) to the eigenvalue ), and the biorthonor-
mality condition (5.4.17) takes the form

a p+s+1

Z Z (L(q)()‘ <P§‘;)+s+1-q, wzﬁ“ﬁ pac

p=0g¢= p+1

+<B(Q)()\ )(Pgl,g+s+1 @ Z T q)(>\ ¢k0 —p— () C) = 6j,k 6Syf€p,,k—1—0 .

Furthermore, by Lemma 5.4.3, the vector-functions v, ; ¢ in (5.4.23) are given by
the equalities

Vs = T(_Bt) Vu,j,s |BC .
Thus, according to Theorem 5.4.1 and Theorem 5.4.3, we get the following assertion.

THEOREM 5.4.4. Suppose that the boundary value problem (5.4.26), (5.4.27)
is elliptic and By, ..., By, form a normal system of boundary operators on 9C of
order less than 2m. Furthermore, we assume that A1,... , AN are the eigenvalues of
A(N) in the strip —fBs < Re X < —f1, while the lines ReA = —3; and Re A = —f3
do not contain eigenvalues of A(N).
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Ifu e Wéfﬁl (C) 1is a solution of the boundary value problem (5.4.26), (5.4.27)
and (f, g) belongs to the space

2
_om li—p—1/2
N (Wgﬁf (€) x Wy 3¢ (ac:))
i=1
(I3, lo = 2m), then there is the representation

N Iu su,-l

u= E :E : E : Cu,j,s Up,g,s T W,

p=1j=1 s=0

where the functions u, ;s are given by (5.4.3) and w € Wéfm (C). The coefficients
Cu,j,s are determined by the formula

m
Cpiis = (FrVugimn,—1-s)¢ + O 0k s Bini (=00 Vi gy ;—1-5) e »
k=1

where v, ;s 15 given by (5.4.23).

5.5. The boundary value problem with coefficients which stabilize at
infinity

The last section of this chapter is dedicated to elliptic boundary value problems
in the cylinder C = Q x R with coefficients depending both on x € 2 and t € R. We
assume that the coefficients of the differential operators stabilize at infinity. This
means, in particular, that there exist the limits of the coefficients for ¢t — +oo.
Replacing the coefficients by their limits, we obtain a model problem in the cylinder
C. If this model problem is uniquely solvable in a weighted Sobolev space (i.e., if
no eigenvalues of the corresponding operator pencil lie on a line parallel to the
imaginary axis), we obtain the Fredholm property of the operator of the given
boundary value problem.

Furthermore, we describe the behaviour of the solutions at infinity. In partic-
ular, we show that the solution is the sum of a linear combination of finitely many
”singular functions” and a regular remainder if the functions f, gi on the right-
hand sides of the boundary value problem belong to weighted Sobolev spaces with
another exponent 3 in the weight function. Under certain additional conditions
on the coefficients of the differential operators, we obtain a representation of these
singular functions.

5.5.1. The stabilization condition. We consider the problem

(5.5.1) L(z,t,0,,0)u=f inC,
(5.5.2) B(z,t,0;,0;) u+ C(x,t,0;,0;)u=g on dC,
where

L(Il?,t, (91,(%) = Z aa,j(mvt) a:czl ag

o] +j<2m

is a differential operator of order 2m with infinitely differentiable coefficients aq, ;
on  x R, B(z,t,0;,0;) is a vector of differential operators

Bk(a:,t,c')m,c’)t) = Z bk;a,j(zvt) 8:?33

lo|+5<pr
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with infinitely differentiable coefficients by, ;, and C(z,t,0;,0;) is a matrix of
tangential differential operators Cy ;(z,t,0;,0;) of order < pi + 7; on 9C with
smooth coefficients c;, ;.o s. We assume again that ord By, < 2mfork =1,... ,m+J.
Then the vector B admits the representation

(5.5.3) B(x,t,8,,0;) u|,. = Q(x,t,8,,8;) - Dul .,
where Q is a (m+J) x J-matrix of tangential differential operators Qy; (z, t, 8, 8;),
ordQr; pr+1—7,Qr; =0if uyp+1—5<0.
Moreover, we suppose that the coefficients of L, B, and C' stabilize for t — Fo0,
i.e., there exist smooth functions aﬁf’;, b,(co()l i c,(c(’);.;ays on € and in a neighbourhood
of 9%, respectively, such that
97 0 (aq,;(z,t) — a,(lo’; (x)) — 0 ast— Fo0,
07 0} (bya,j(m,t) — b,(col (z)) —0 ast— too
87 0 (ck jias (@) =€) o (@) — 0 ast— oo
uniformly with respect to z for all nonnegative integer u and all multi-indices +y.
We denote the operator of the problem (5.5.1), (5.5.2) by 2(t, d;), while 2o(0;)
denotes the operator of the model problem

(5.5.4) LO(z,8,,8,)u=f inC,
(5.5.5) BO(z,0,,8;)u+C(z,8,,8)u=g onaC
which arises from (5.5.1), (5.5.2) if we replace the coefficients a, ;(,t), bi;a,; (2, t),

Ck,jia,s (2, 1) by ag)’} (z,1), b,(c?()l)j(x, t), and c,(c(?;;a,s(a:, t), respectively. Both operators

A(t,0;) and Ap(0;) continuously map the space (5.2.16) into (5.2.17) for arbitrary
integer | > 2m and real 8. Furthermore, as an immediate consequence of the sta-
bilization condition, we get the following lemma.

LEMMA 5.5.1. Suppose that the coefficients of L stabilize for t — Foo. Then
there exists a constant cr such that

I(L(z,t,8s,8;) — LO(x,8,,8)) ulwi-zm ey < er ullwg )

for allu € Wéﬁ(C) equal to zero in Q x (—=T,+T), l > 2m. The factor cr tends to
zero as T — +o0.
Analogous assertions are valid for the operators By, and C ;.

5.5.2. Extension of the operator corresponding to the boundary value
problem. Analogously to the case when L, B , and C' are model operators, the fol-
lowing Green formula is valid for all u, v € C§°(C), u € C§°(8C)”7, v € Cge(0C)™+

(L(tv 8t)ua U)C + (B(ta 6t)u + C(ta 8t>ﬂ; Q)BC
= (u, L*(t, —8,)v) , + (Du, P(t, -0 )v + Q* (¢, —0)v) o + (w, CF(t, —00)v) 5,

(for the sake of brevity, we have omitted the arguments x, 8, in the differential
operators). Obviously, the coefficients of the formally adjoint operators L (¢, —;),
Q*(t,—08:), CT(t,—8) to L(t,8;), Q(t,0;), C(t,0;) stabilize at infinity. Further-
more, it can be easily shown that the coefficients of P(t,—0;) stabilize at infinity.
This follows from the explicit formula (2.3.12) for the operator P in the Green
formula for the half-space. In the same way as it was carried out for the operator
Ao(0;) (see Lemma 5.3.3, Theorem 5.3.1), the operator 2((¢, ;) can be extended to
the space (5.3.11) with arbitrary integer I. This leads to the following results.
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LEMMA 5.5.2. The operator

(5.5.6) Wala#™(C) > (u, Dulac) — Lu = f € W3 4(C)
can be uniquely extended to a continuous operator
(5.5.7) Wya™(C) 3 (u,¢) — f € WTSHC)", 1< 2m.

The functional f = L(u,¢) € W3™; l(C)* in (5.5.7) is given by the same for-
mulas as in the case of ¢- 1ndependent coefﬁcients (cf. Lemma 5.3.3). In the case
[ <0 we have

(5.5.8) (f,v)e = (u, L*(t, —8;)v) +Z 5, Pj(t,—0e)v) 5,

j=1

forv e 1/\/2m l(C) while in the case 0 < [ < 2m the formula (5.3.15) is valid, where
L. ;, P; and Pl ; are differential operators with ¢-dependent coefficients stabilizing
at 1nﬁn1ty

THEOREM 5.5.1. Suppose that the coefficients of L, B, and C stabilize at in-
finity. Then the operator

(5.5.9) Wem(C) x WaT12(8C) > (u, Dulac, u)
— (Lu, Bulge + Cu) € WL 2™(C) x Wy 2/ (ac)
with I > 2m can be uniquely extended to a linear and continuous operator
AL, d) : WEE(C) x WETY2(8C) — W 2m0(c) x Wi £ (ac)
with | < 2m. This extension has the form
(u, ¢,u) = (L(u,9), Q¢ + Cu),
where L 1is the operator (5.5.7) and Q is the matriz in (5.5.3).

Due to the stabilization condition on the coefficients of the operators L, B, and
C we can generalize the regularity assertion of Lemma 5.3.5.

LEMMA 5.5.3. Suppose that the coefficients of L, B, C stabilize at infinity and
the boundary value problem (5.5.1), (5.5.2) is elliptic. If (u,¢,u) € Wy %m(C) X

WHT 1/2(86) is a solution of the equation A(t,0) (u, p,u) = (f,g), where f €
Wl 2m+1 O(C) andg € Wé ,;‘“/2(30) then (u, #, w) € Wz+1 Qm(c)xwé:;}z+l/2(ac)'
Furthermore, the inequality

(5:510) (w015 < ¢ (I Flhagzmeioie) + Iglyi-srt/2 e + & 0)les)

is satisfied with a constant ¢ independent of (u, ¢, u). Here || - || 3 denotes the norm
in Wya™(C) x Wyig3(8c).

Proof: Let (u, ¢, u) be an element of the space Wl 2m(C) X WH'T Y 2((9(3) and
let (x, nx be the same functions as in the proof of Lemma 5.3.4. From Lemma 3.2.4

it follows that Cx(u, ¢, u) € Wit 2m(C) l+T+1/2(8C) and
(5~5~11) ”Ck(%@ﬂ)”zz.:,.Lﬂ < ok <“Ckf||$;vé—ﬁ2m+1o + “Ckg” l u+1/2

+ fim(, &, w)1125)

(ac)
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with certain constants c independent of (u, ¢, u). By (5.3.21), we have

Gt 0 WllEn s < e (I662%0(3:) (s &, w1

+ s 6, )15

with a constant ¢ independent of k. Furthermore, as a consequence of Lemma 5.5.1,
the inequality

- u+1/2

z 2m+1 O(C) Wy (8C)

HCk( t 615 910((%)) (U ¢7 )” L 2m+1 O(C)XWl p+1/2(8c)

< e (116w, & Wllivr0 + Ime (v, & wnm)

holds, where the factor €5 tends to zero as k — *o00. From the last two inequalities
it follows that the constants ¢ in (5.5.11) can be chosen independent of k. Summing
up over all integer k in (5.5.11) and using Lemma 5.3.1, we get (5.5.10). m

REMARK 5.5.1. Analogously to Lemma 5.3.4, there is the estimate

Zl ”Ck¢3” l J+1/2(3c) <c (”nkullwl O(C) + ||77kL(U ¢)||Wl 2m 0(C)>
J

for each (u, ¢) € Wé% '(C). Hence the term I|(w, ¢, )]s, in (5.5.10) can be replaced
by =
||u||w;;‘;(6) + ”Q”Wé-;az—l/z(ac) .

5.5.3. The Fredholm property for the operator of the boundary value
problem. Since the space Wé s (C) is not compactly imbedded into the space
Wz’ (C), we can not conclude from Lemma 3.4.1 and from the a priori estimate
(5.5.10) in Lemma 5.5.3 that dimker (¢, 8;) < co. However, under the additional
assumption that the line ReA = —f3 does not contain eigenvalues of 2y(A), the
estimate (5.5.10) can be sharpened.

LEMMA 5.5.4. Suppose that additionally to the assumptions of Lemma 5.5.8
the line ReA = —f does not contain eigenvalues of Ao(X). Then every solution

(u, §,u) € Wy5™(C) x WyiF™/%(3C) of the equation A(t,8;) (u,8,u) = (f,g,h)
satisfies the estimate

(6512) (w2 0llo < e (Mllwgzm ey + Ilyis-272050) + 160 0 0ll1,0),

where || - ||1,3 denotes the norm in Wé Qﬁm(C) X WHT 1/2(6(,’) and ¢ is a smooth
function on C with compact support.

Proof: Let 1, x be infinitely differentiable functions on C depending only on
the variable t such that

n(t)=1 for|t|<T, n(t)=0 for|t|>T+1,
xt®)=1 for T<|[t|<T+1, x(t)=0 for|t|>T+2,

where T is a sufficiently large number. Then Lemma 5.5.3 yields

I (u, ¢, ) (120t eI, . 0) sy ot 2725y + (0 ) i1.0).
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By Theorem 5.3.2, the operator y(9;) realizes an isomorphism
WEE™(C) x WEETY2(8C) — W20y x Wy 272
Hence Lemma 5.5.1 implies
L= ) (0 8,85 < A8 (1= )0 05t 72

Let [A(¢, 8),n]) = A(¢, 0:) n — nA(t, B;) be the commutator of A(¢,d;) and 7. Since
x = 1 on the support of [A(t,d;),n| (u, $,u), we have

(ac).

H[Q‘(t’at)’n] (U’Q’g)uy‘;éjm,o(c)xwl n= 1/2(66) c“X(u ¢7 )”l—lﬂ :
Consequently, we get

”(u’f)q_‘)”l,,@ < ||77(U, Q’ Q)Hl,ﬁ + ”(1 - 77) (u) ?_1 ﬂ)”lﬁ
<c (”m(t7 at) (uvfa E)”V.Vé’_ﬁzm‘o((:)XW;TE&_UQ(@C) + “C(ua 97 ﬂ)“l—l,ﬂ) )

where ( is an arbitrary smooth function equal to one on the supports of n and x.
The lemma is proved. m

Obviously, the term [|¢(u, ¢,u)|li—1,5 in (5.5.12) can be replaced by the norm
of (u, ¢,u) in the space

(Wé 5112m(c)+ W 12m(c)) ( éx 3/2(8C)+Wl+7 3/2(8(3))

where 31, (B2 are arbitrary real numbers such that §; < § < (2. Since the space
Wé%m (C) x Wé:;l—l/ 2(8C) is compactly imbedded into this space, we can conclude
from Lemma 5.5.4 and Lemma 3.4.1 that the kernel of (¢, ;) has finite dimension
and the range of (¢, 8;) is closed.

In the same way as in Section 3.3 (cf. Theorem 3.3.1), an estimate analogous
to (5.5.12) can be proved for the adjoint operator. We do not give a detailed proof
for this assertion here, since we will be confronted with the same considerations in
Section 6.3, where the Fredholm property for the operator of the boundary value
problem in a domain with conical points will be proved. The estimate for the
adjoint operator implies dim coker A(t, ;) < co. Therefore, we obtain the following
theorem.

THEOREM 5.5.2. Suppose that the coefficients of L, B, C stabilize at infinity
and the boundary value problem (5.5.1), (5.5.2) is elliptic. Furthermore, we assume
that no eigenvalues of Up(N) lie on the line Re A = —B. Then A(t, d;) is a Fredholm

operator from Wl 27 (C) % Wl+T 1/2 (8C) into the space Wl 2m0(¢) XWZ;E_I/Z(aC).
5.5.4. Asymptotlcs at infinity. Now we study the asymptotics of the solu-
tions of problem (5.5.1), (5.5.2) at infinity. For the sake of simplicity, we consider

only solutions which belong to the space W} 45(C) x W2 ¥ 1/2(86) with [ > 2m.
All results can be easily extended to generalized solutions of problem (5.5.1), (5.5.2).

The structure of the solution.

THEOREM 5.5.3. Suppose that the coefficients of L, B, C stabilize for t — 400
and the boundary value problem (5.5.1), (5.5.2) is elliptic. Furthermore, we assume
that the lines Re A = —fB1, Re A = — B, where f1 < B2, do not contain eigenvalues
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of Uo(X) and that the sum of the algebraic multiplicities of all eigenvalues in the
strip —B, < Re A < —f is equal to k. Let I, lo be integer numbers not less than
2m and let

(u,u) € Wity (C) x Wy 3= /2 (8c)

be a solution of the boundary value problem (5.5.1), (5.5.2). If (f, g) belongs to the
intersection of the spaces

l,—p—1/2

(5.5.13) Wi 52™(C) x Wy .57 (C)

(1 =1, 2), then there exists a Teal number T such that
W0, 5(,8) = 3¢ Uy 0) + (W D w(,8)  fort>T,
Jj=1
Here (w,w) is a solution of the equation A(t,0;) (w,w) = (f,g) for t > T which
belongs to the space

(5.5.14) Wi (C) x W= 12 (8c),

c; are constants, and U; = (u(),u9)) € szﬁl (C) x Wl1+T 2(8C) are linearly
independent modulo the space (5.5.14) and satisfy the equatzon A(t,0,)U; = 0 for
t>T.

Proof: Due to Lemma 5.5.3, we may assume, without loss of generality, that
l1 =1y = 1. Let {¢r}7r>0 be a set of functions on the t-axis such that {r(t) = 0 for
lt| < T, {r(t) = 1 for |t| > T+ 1, and |D] {r(t)] < ¢j for j = 0,1,..., where the
constants c; are independent of T. We introduce the operator

Aery (t,8:) 2 Ao(8) + Crlt) (A(t, 8;) — Ao ()

Since A (0;) is an isomorphism from
(5.5.15) W 5,(C) x W71 2(c)

onto the space (5.5.13) for s = 1, 2 and the norm of 27 (t, d;) — Ao(J;) is small for
large T', the operator A7) (t, 0;) is also an isomorphism from (5.5.15) onto (5.5.13)
if T' is sufficiently large.

Furthermore, o(9;) and 27 (t, ;) (for large T') are continuous and surjective
operators from

(5.5.16) (wg,ﬁl(C) x WhE™ 1/2(8C)> + (wgﬁz(m X Witz 1/2(8C))
onto
(5.517) (Wi Zm(C)xW;;f‘”Q(aC)) (WEm(©) % Wi 1/2(86)).

According to Theorem 5.4.1, the kernel of 2y(8;) in (5.5.16) is spanned by the
vector-functions (u s, 4, ;) defined by (5.4.3). Hence for the index of the op-
erator Ap(9;) considered as a mapping from (5.5.16) into (5.5.17) the equality
ind(8;) = dimker%y(d;) = x holds. By the invariance of the index under
small perturbation of the operator (se, e.g., [166], Ch.1, Theorem 3.5), we get
ind 27 (t,0;) = dimker%(1y(t,0;) = &, i.e., there exist exactly s linear indepen-
dent solutions U; of the equation R4(7y(t,0;) U = 0 which belong to the space
(5.5.16). Since the kernel of the operator 27 (t, ;) in the space (5.5.14) is trivial,
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these functions are linearly independent modulo the space (5.5.14). Let nr = nr(t)
be a smooth function equal to zero for ¢ < T+ 1 and to one for ¢ > T+ 2. Then

22((T) (ta at) nr (ua Q) = Ql(t’ at) nr (u’ y)

nr(f,g) + (A, 0)nr — nrU(t, ) (u,u)

belongs to the intersection of the spaces (5.5.13). Consequently, for sufficiently
large T there exists an element (w,w) of the space (5.5.14) satisfying the equation

A1 (t,0) (w,w) = Ay (t, O) nr(u, w). Thus, nr(u, u) — (w,w) is an element of the
kernel of 2(r)(t,0;) in (5.5.16) and therefore,

nr(u,u) — (w, w) ch
The proof is complete. m

Asymptotic expansion for boundary value problems with coefficients having ez-
ponentially decaying t-derivatives. Theorem 5.5.3 does not contain an explicit for-
mula for the vector-functions U; in the asymptotics. In order to get a more precise
description of the behaviour of the solution at infinity, we have to impose more
restrictive conditions on the coefficients. We suppose in the sequel that the coefli-
cients of L, By, and Cj ; have the form

Qa,j(z,t) = a(O)( )+ e(Br1—B2)t (1) (:1,‘ £),
(5.5.18) b (T, 1) = b 3( z) + e(B1— Gyt b(l) J(z,0),
1 2 1
Chg510) = 0 (0) + BN (3,
(1)

for t > T, where a'!) bt %, dcp

aj? Okiagr and €
order.

have bounded derivatives of arbitrary

LEMMA 5.5.5. Suppose that the coefficients of L, B, C satisfy the conditions
(5.5.18) and the boundary value problem (5.5.1), (5.5.2) is elliptic. Furthermore,
we assume that there are no eigenvalues of Ag(N\) on the lines ReX = —0; and
Re A\ = — By, where 51 < B2. If Iy, lo are integer numbers not less than 2m,

(u,u) € Wiy (C) x Wit= 12 (5c)
is a solution of the boundary value problem (5.5.1), (5.5.2), and (f, g) belongs to the
intersection of the spaces (5.5.13) (i =1, 2), then (u,u) admits the decomposition

N I, rku;-1

U’U,) ZZ Z Cund,s uﬂ»:]vs’@p‘]s)'k(w ’LL)) fort>T,

pu=1lj=1 s=0

where (w,w) belongs to the space (5.5.14) and u, s, u are defined by (5.4.3).

Lp,g,8

Proof: Under the assumptions of the theorem, ((¢, d;) —Ao(0:)) (u, u) belongs
to the space (5.5.13). Hence it follows from the equation

o () (u, ) = (£, 9) — (A(t, 0:) — Ao (0r)) (u,u)

and Theorem 5.4.1 that (u,u) has the representation given in the lemma. =
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Asymptotics of the solution for special right-hand sides. Now we assume that
the coefficients of L, By, and C} ; have the representations

(5.5.19)

(
G (T, t)—a(o) :c)+Ze —otg L) (z,t) 4+ e O+t (s’jl)(a:,t),

bk;a,j (-Ta t) - b(O)

ka]w)+§:e‘“b(” (2,8) + e~ b0 ) (@, ),

kjo,jg ki, j

0 - +1
Ch o (@) = i) o (@) +Z€ “C;fg (T 1)+ €70 .Ecsj a),“(w,t)

for t > T, where 6y,...,0541 are given complex numbers such that
0<Reb; <...<Reb; Sﬂg —ﬂl SRe5s+1

al b e =1,

with coefficients which are infinitely differentiable with respect to z, and a

aj
b,(:;:;), E:jcll) ,, are smooth functions which have bounded derivatives of arbitrary

order for ¢t > T.
Furthermore, we suppose that f and g admit the decompositions

., §) are polynomials with respect to the variable ¢
(s+1)

q
(5.5.20) flat) = Y e fO @)+ fT ) (a,1),

=1

q

(5.5.21) g(z,t) = > et gW(z,t) + g (a,1),

=1
where f(4t1) ¢ Wé;fzm(C), g(‘”l) € Wé;,%_l/z(ac), o1,... ,04 are complex numbers
such that

61 <Re01 <Re0q<1827

f@, g(L) are polynomials with respect to the varable ¢t with coefficients from the

spaces W.=2™(2) and Wl u-1/2 (692), respectively.
We denote by A(Xo) the set of all sums

§=06,+ - +6,

formed by the numbers §, in (5.5.19) such that Re § < 2 —Re A\g. Here the number
6 = 0 is included if Re \g < 5.

THEOREM 5.5.4. Suppose that the coefficients of L, B, C have the representa-
tion (5.5.19) for t > T and the boundary value problem (5.5.1), (5.5.2) is elliptic.
Furthermore, we assume that the lines ReA = —(1, Re XA = —f,, where $; < o,
do not contain eigenvalues of Aog(A) and denote by A1,...,An the eigenvalues of
Ao(A) lying in the strip —P2 < Re X < —f. If

(u,u) € Wh 5, (C) x Wyl 172 ac)
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is a solution of the boundary value problem (5.5.1), (5.5.2) with functions f, g on
the right-hand side having the form (5.5.20), (5.5.21), then there is the represen-
tation

N
(5.5.22) (u,u) = Zexyt Z =0t (u &%7&212)

p=1 SEA(=Ap)
_ — 2 2
+Z N el ul)) + (w,w)
§€A(a,)

fort > T, where w € W 5 (C), w € Wl+T 2(a¢), and u(z)é-, u(z) (i=1,2) are

l/./,12

polynomials in t with coefficients from Wi(Q) and W, (0R2), respectively.

Proof: Let ¢ be a infinitely differentiable function on the t-axis equal to zero
for t < T and to one for t > T + ¢. By Lemma 5.1.6, there exists a function

q
v) =3 e (0,00),
=1

where v), ) are polynomials of the variable ¢ with coefficients in W(Q) and

WH'T 1 2(39), respectively, such that

Ao (8:) (v,v) = (f,9) — (f(q+1),g(q+1)).
Then C((u,’l_lf_) - (’Uay)) satisfies the equation

(5.5.23) Ao(0:) ¢((w, ) — (v,2)) = ¢(FOTD, gl T) + ¢ (Ao (8:) — A(t, By)) (u,w)
+ [mO(at),C] ((u, ﬂ) - (U7y));

where [%o(8:),¢] = Ao(0:)¢ — (Up(0;) denotes the commutator of Ag(d;) and (.
By our assumptions on the coefficients of L, By, and Cy ;, the right-hand side of
(5.5.23) belongs to the space

m I—pu—1/2
Wé 521+Re 61— e(c) X W2,ﬁ%+R561—e(aC)

with arbitrary small € > 0. We can choose the number ¢ such that the line Re A =
—(B1 + Re b1 — €) does not contain eigenvalues of (). Hence by Theorem 5.4.1,
there is the representation

C((uw) = (v,0) =D M (W™, wh) + (w,w),
"
where ), are the eigenvalues of () in the strip —(81 + Reé1 —¢) < Re A < —f,
(w'®), w(“)) are polynomials in ¢ with coefficients in C*°(Q) x C*°(892), and
(w,2) € Wh s, e, (€) X Wy i s, . (90).

Since eut(w) w(#)) are solutions of the equation () (u,u) = 0, we get

A(t, 0:) (w, w)
= (7, g4 0) — (21,8 ~ Bo(B0) (0,2) + 30 (), 00))

m
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for t > T + c. Here (A(t,0;) — Ao(0:)) (v,v) is a sum of a vector-function from
Wé—ﬁzzm(C) X Wzy—ﬂfﬂl/z(&f) and finitely many vector-functions of the form

e~ TE0 (2(x, 1), 2(x, 1)),

where z, z are polynomials of the variable ¢ with coeflicients in W. l 27"(Q) and

WI_E_I/Z(OQ), respectively. Analogously, (2(t,8;) — o(8;)) e t(w(“),y(“)) is a
l y. 1/2

sum of a vector-function from Wl 2"‘(C’) (8C) and vector-functions of

the form

P8t (2(a, 1), 2(2, 1)),
where (z, z) are polynomials with respect to the variable ¢.
Repeating this procedure for (w,w), we arrive at (5.5.22) after a finite number
of steps. m

REMARK 5.5.2. Theorem 5.5.3 and Theorem 5.5.4 describe the behaviour of
the solution for ¢ — 400. Analogous results can be obtained for ¢ — —oco by means
of the transformation ¢ — —t. We suppose, e.g., that the coefficients of L, By, C ;
have the representation (5.5.19) for t < —T with §, instead of —6, (t =1,...,s+1)
and

0<Rebd <...<Rebs Sﬂl—ﬁggReésH.
Furthermore, let f, g be functions which admit the decompositions (5.5.20), (5.5.21)
with o, insted of —o, (¢ =1,...,¢) and
—01 <Reo; <...<Reoy < —f.

As in Theorem 5.5.4, we further assume that the boundary value problem (5.5.1),
(5.5.2) is elliptic and the lines ReA = =81, Re A = —32 (81 > [2) do not contain
eigenvalues of 2g(A). Then the solution (u,u) € W4 4 (C) x Wé'gl Y %(8C) of the
boundary value problem (5.5.1), (5.5.2) has the representation

Z“ > oe EJ%,_SMZe“ S e w®, 1) + (w,w)

p=1 SEA(\L) =1 seA(o,)
for t < —T, where \1,... , Ay are the eigenvalues of 2, () lying in the strip —8; <
Re ) < —[s, 2)5, @ s (¢ = 1, 2) are polynomials with respect to the variable ¢,
and (w,w) belongs to the space (5.5.14). In contrast to Theorem 5.5.4, here A(Xo)
denotes the set of all sums

6=0,+ +6,

such that Red < —fFs — Re Ap.



CHAPTER 6

Elliptic boundary value problems in domains with
conical points

This chapter is concerned with boundary value problems in domains with conical
points (angular for n = 2) on the boundary. We investigate the solvability of
elliptic boundary value problems in weighted Sobolev spaces Vzl 5, where the index
0 characterizes the powerlike growth of the solution near the conical points. Here
both Sobolev spaces of positive and negative orders are considered. Furthermore, we
describe the behaviour of the solutions near the conical points. We show that, under
additional conditions on the right-hand sides of the boundary value problem, the
solution is the sum of finitely many singular functions and a ”"regular” remainder.

6.1. The model problem in an infinite cone

First we consider boundary value problems in an infinite cone X, where the
differential operators L, By, and C ; are so-called model operators. For example,
homogeneous operators with constant coefficients are model operators in the domain
K. By means of the change of coordinates z — (w,t), where t = logr and r,w are
spherical coordinates, the model problem in K can be reduced to a model problem
in a cylinder. In this way, the results of this section are immediate consequences of
the corresponding assertions in Sections 5.2-5.4. In particular, we obtain necessary
and sufficient conditions for the unique solvability of the model problem in weighted
Sobolev spaces. Another goal of this section is the description of the behaviour of
the solutions near the vertex of the cone.

6.1.1. Weighted Sobolev spaces in a cone. Let X C R” be a cone with
vertex at the origin, i.e.,

K={zeR":0<r<oo,weN},

where  is a domain on the unit sphere S™~! with smooth boundary Q. Here and
in the sequel, r = || and w = z/|z|. For integer [ > 0 and real 3 we define the
space Vzl 5(K) as the closure of C§°(K\{0}) with respect to the norm

1/2
_ 2(B—1+|al) a, |2
(6.1.1) lullvs o) = (/|z|;zr | Dz ul dm)
K lels

If I > 1, then Vzl;al/ 2(8K) denotes the space of traces of functions from VQZ 5(K) on
the boundary K equipped with the norm

(6.1.2) lully-3/2 ) = inf {||v||vzl,ﬁ(,c) L v € Vi 4(K), vlox = u} .

191
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Obviously, the space VQZﬁ (K) is continuously imbedded into the space V;lﬁl (K) if
{>1; and § — 1 = 1 — 1. An analogous assertion holds for the space Vzlygl/ 2(8K).

Equivalent norms. Let (j be infinitely differentiable functions on /C such that

(6.1.3)

+
supp (i C {z € K: 2871 <z < 2%}, Y Ge=1, DG <ca27M,

k=—o00
where the constants ¢, are independent of k.
Repeating the proof of Lemma 5.2.2, we obtain the following lemma.

LEMMA 6.1.1. The norm in the space Vzlﬂ (K) is equivalent to the norm

+oo /2
= (3 16l o0) -

k=—o0
An analogous assertion holds for the norm in the space V;;/ 2 (6K), 1> 1.

Passing to spherical coordinates w, r, the cone K can be represented as QxR =
{(w,7) : w € Q,0 < r < oo}. The scalar products in L2(K) and L2(0K) generate
scalar products in Ly() and Ly (0S2) such that

o0

(u,v)xc = /r"_l (u(,7),v(-, 7)), dr for each u,v € Ly(K),
0

(u,v)axc = /r”_z (u(-,7),v(- 7)) 5 dr  for each u,v € Ly(0K),
0

where u(w, ) = u(z). It can be easliy verified that the derivative < has the form

lex|

82 =171 pay(w,0.) (r9,)7

j=0

where p, j(w,d,) are differential operators of order < |a| — j with smooth coefli-
cients on the sphere, and 8, = r~! Z?zl x; 0/0x;. On the other hand, for every
differential operator p(w, d,,) of order k with smooth coefficients on the sphere and
every j > 0 there is a representation

p(w,8,) (rd,)’ = Z aa(z/T) rle] 9,
|a|<k+j

with smooth coefficients a, on the sphere S"~!. Hence the norm in V2l 5(K) is
equivalent to

oo

l
©14) = ([P 08w gy )
0

=0

where u(w,r) = u(z).
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The coordinate transformation ¢ = logr takes the half-cylinder 2 x Ry onto
the cylinder C = €2 x R. For arbitrary functions u on Q x Ry or Q x R let Eu be
the function

(6.1.5) (Eu)(w,t) = u(w,e’).
Since r0,u = 0;€u, the norm (6.1.4) is equal to

e L . 1/2

< / e2(B=1)t+nt Z 167 (Eu) (-, )”WL i@ ) .

— 0 7=0
Therefore,
(6.1.6) Jull = 1P~/ Eullyaiey = 1€ullwy . o)
is another equivalent norm to (6.1.1). Analogously, the norm
617)  full = 1 Eul s n gy = [Eulyrre e

is equivalent to (6.1.2). This is used in the proof of the follovvmg lemma.

LEMMA 6.1.2. The norm in Vl 12 (0K) is equivalent to

ol = (3 / D00,y a1
j=0 0
00 ; ; 2
-1 Il r) — (8. ) ul(- L
+ / /7’2(’8 I+ Or)u(:,r) (l:: b) ;( ap)“WZf i=1(50) dpd’r’)l/z
7=079 r/2 P
for arbitrary integer [ > 1.
Proof: Using the equivalence of the norm in W. l 1 2(8C) to the norm
hull = / D7 )12 gy
J=0%
=1 R D]ul, 1) — Diu(, 7)1}
t ) T P l—7—1 1/2
+ el O dr )
; [t — 7)?
J=0—oot—10g2

(see [126, Ch.1, §10]), we obtain that the norm (6.1.7) is equivalent to
Z/ 2(B—1+n/2)t ”ngu( )” - dt
J= OIR

j—1 Foottlog2 | D]Eu(-,t) — DiEuf- 7')||2W j
3 y T 3 l—5—1 1/2
Z 2(B—l+n/2)t : e
/ / [t — 7|2 det) .

J= —oot log2

Substituting t = logr, 7 = log p and using the inequalities

logr 1 2
|logr ~logp| _ 2

— fi 2 2
o ) orr/2 < p<2r

we get the assertion of the lemma. m
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Furthermore, equivalent norms to (6.1.1), (6.1.2) can be given by means of the
Mellin transformation

(6.1.8) 40 = Mrosw)(N) = / r >l u(r) dr.

0
We recall some basic properties of this transformation which follow from Lemma
5.2.3 and from the equality (M, u)(X) = L;—x u(e’).

LEMMA 6.1.3. 1) The transformation (6.1.8) realizes a linear and continuous
mapping from C§°(R,) into the space A(C) of analytic functions on C.
2) Every u € C§°(R4) satisfies the equality

My (10 )u = AM,_ \u.
Furthermore, for all u,v € C§°(R,) the Parseval equality

(6.1.9) /rw—lu(r)ﬁdr = 2%” / a(\) 5(\) dA
0 ReA=—0

is valid. Hence the transformation (6.1.8) can be continuously ertended to the
isomorphism

{’LL c P2y e LQ(R+)} — Lg(f-ﬁ),

where {_g denotes the line Re A = —f3 in the complex plane.
3) The inverse Mellin transformation is given by the formula

u(T)=(M;_£Ta)(r)=% / ™ a(\) d.
ReX=-4

4) If rBi=1/2y € Ly(Ry) for i = 1,2, where B1, B2 are arbitrary real numbers,
(1 < B2, then 4 is holomorphic in the strip —B2 < Re A < —f.

Using the Parseval equality, we obtain the following assertions.

LEMMA 6.1.4. The norm (6.1.1) is equivalent to

1 1/2
w=(s [ SO B e 1)

Rex=—p+l-n/2 370
where 4w, A) = (My_u)(w, A) and u(w,r) = u(z). Analogously, the norm (6.1.2)
is equivalent to
1 e 1/2
= (o [ AR + PP I om ) a1)
ReA=—p+1—n/2

Proof: The first assertion follows from the equivalence of the norms (6.1.1),
(6.1.4) and from the Parseval equality (6.1.9), while the second assertion is a con-
sequence of Lemma 5.2.4. m

Weighted Sobolev spaces of negative order. Let [ be a nonnegative integer. Then
vi 5(K0)* denotes the dual space of V4 5(K) equipped with the norm

vy = sup {[(w,0)xl = v € V(). lollyg ) = 1},
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where (-,-)x is the extension of the scalar product in Lo(K) to pairs (u,v) €
Vi 5(K)* x Vi 4(K). Obviously, for I = 0 we have Vy3(K)* = Vi _4(K). Analo-

gously, V; | l+1/ 2((9IC) is defined as the dual space of V;;}f(@C).
For 1nteger kandl, k>0, let f/zlg (K) be the set of all pairs (u, ¢), where
c Vzl)ﬁ(IC) if 1 >0,
V, Ls(K) if 1 <0,

and

k
b= (b1, o) € [[ Vo TV/2OK),  ¢; = Di ooy for j < min(k, ).
j=1
In particular, }7;8 () coincides with Viﬁ(lC) if I > 0 and with Vz_i s(K)"if 1 <0.
The norm in V;g (K) is defined as

k
“(Ua @Il(/;:g(x) = “u”f/;‘vg(;c) + Zl ”(lsj“Vzl,;jﬂ/z(aK) .
]:

The mapping £ defined by (6.1.5) is an isomorphism from f/zlg (K) onto the space

Wélg_ 14+ny2(C). Furthermore, the norm in fleg (K) is equivalent to

Jull = ( 5 IGeulse)

k=—o00

where (;, are infinitely differentiable functions satisfying the condltlons (6.1.3) (cf.
Lemma 5.3.1).
From the definition of the space Vzl 5(K) it follows immediately that

Vylg (K) C Va2 (K) i li 21220, 1=l =~y
This imbedding is continuous. Analogously, there are the imbeddings
VQZ,lﬁ_ll/ZUC) - Vlz 1/2(’C), Vgllgf(lc) Vll’ LK) il >, 1=l =P — o

In all these imbeddings the first space is dense in the second one.

6.1.2. Solvability of the model problem in a cone. A differential operator
P(z,d,) is said to be a model operator of order k in the cone K if P has the form

k
(6.1.10) P(2,0;) =1 " P(w,00,70,) =17% > " pj(w,d,,) (rd,)’
7=0

where p;(w, d,,) are differential operators of order < k — j with smooth coefficients
on Q. Analogously, the differential operator P(z,8,) is said to be a tangential
model operator of order k on OK\{0} if P has the form (6.1.10), where p;(w, 0,,) are
tangential differential operators of order < k — 5 on 952 with infinitely differentiable
coefficients.

Note that the order with respect to differentiation of a model operator of order
k can be strictly less than k.
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Examples. 1) Every homogeneous operator P(9,) = Z aq 05 of order k with
o=k
constant coefficients is a model operator of order k.

ou

2) Th —
) The operator u — £y

ou 1 Ou
A, (z) = - %(wﬂ‘)-

Obviously, every model operator of order k& continuously maps Vzl 5 (K) into the

| K\ {0} is a model operator of first order, since

space Vzl;k (K) for arbitrary integer [ > k, B € R. We consider the boundary value
problem

(6.1.11) Lu=f ik,

(6.1.12) Bu+Cu=g  ondK\{0}.
Here

(6.1.13) L=L(z,8,) =r"°" L(w,d,,70,)

is a model operator of order 2m, B is a vector of model operators

(6.1.14) Bi(z,0;) =17" Bp(w,8,,70,), k=1,...,m+J,

of order uy, and C is a matrix of model operators

(6.1.15) Ci j(z,05) =1 H77Ch j(w,0uyr0r), k=1,... ,m+J, j=1,...,J,

of order pr + 7; which are tangential on OK\{0}. We call the boundary value
problem (6.1.11), (6.1.12) model problem in the cone K. The model problem is said
to be elliptic if the differential operator L is elliptic in \{0} and condition (ii) of
Definition 3.1.2 is satisfied for all (%) € 9K\ {0}.

We suppose in the sequel that the orders (with respect to differentiation) of
the operators By, k= 1,... ,m + J, are less than 2m. Then

(6.1.16) B(z,0x)ulax\ {0y = Q(%,0z) Dulaiy {0

for u € C$°(K\{0}), where Q is a (m + J) x 2m-matrix of tangential differential
operators Qk,;(x,0;), ord Qg ; < ur —j + 1, and D denotes the column vector with
the components 1, D,, ... ,D?m~1,

The operator A of the boundary value problem (6.1.11), (6.1.12) continuously
maps

(6.1.17) Vi 5(K) x V3 57712 (0K)
into the space
(6.1.18) VEG(K) x V2 0K)

for arbitrary integer [ > 2m and real (5. Here VY251 , Vl‘ﬁ_l/2 OK) denote
2,8 2,8
the products of the spaces VZLY';T"_I/ ?(8K) and Vzl;“ k=1/ ?(8K), respectively.
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Applying the coordinate transformation z — (w,r) to (6.1.11), (6.1.12), we get
the problem

(6.1.19) L(w,0,,r0)u=7""f inQxR,,

J
(6.1.20) By(w, 0w, 70r) u + ch,j(w,aw,r&‘ +7;)r u; =rfe g on 0Q x Ry,
j=1
k=1,... ,m+J, with the unknowns u, v~ ™uq,...,7 "7u;. Here we have used the

equality (rd, + ;) (r~™u;) = =7 r0, u;. We denote the operator of this problem
by 2(rd,) and the operator of the corresponding parameter-depending boundary
value problem

(6.1.21) L(w,0,,\)u=f inQ,
J
(6.1.22) By(w, 8., Nu+ ch,j(w,&u, A+Tj)uj=g; ondQ, k=1,...,m+J,
j=1
by 2A(\).
LEMMA 6.1.5. If the boundary value problem (6.1.11), (6.1.12) is elliptic in

K\{0}, then problem (6.1.21), (6.1.22) is elliptic with parameter (see Definition
3.6.1).

Proof: Applying the transformation r = e¢ to problem (6.1.19), (6.1.20), we
get the boundary value problem

(6.1.23) L(w,0,,0)u=e*™f inQxR,

J
(6.1.24)  By(w,d.,0:)u+ ch,j(w,&d,@t + 1) e Tty = et tg; on 0N x R,
j=1
k=1,...,m+J, with the unknowns u,e”"*uy,... ,e~™tu . Since the ellipticity
is invariant with respect to diffeomorphisms, the boundary value problems (6.1.19),
(6.1.20) and (6.1.23), (6.1.24) are elliptic in @ x R} and € x R, respectively. Con-
sequently, problem (6.1.21), (6.1.22) is elliptic with parameter. m

Thus, the operator pencil %()) has the same properties as in Section 5.2 (cf.
Theorem 5.2.1) if problem (6.1.11), (6.1.12) is elliptic. In particular, the spectrum
of () is an enumerable set of eigenvalues.

THEOREM 6.1.1. Suppose the model problem (6.1.11), (6.1.12) is elliptic and
no eigenvalues of U(N) lie on the line ReA = — + 1 —n/2, where | is an integer,
1 > 2m. Then the boundary value problem (6.1.11), (6.1.12) is uniquely solvable in

the space (6.1.17) for all f € Vi 4(K), g € V;;}‘”Q(am and the solution (u,u)
satisfies the estimate

(6.2.25)  lullvg ooy + llullyrez-rr2 o) < <||f||v;,;2moo + HQHV;}‘”Z(M))
with a constant ¢ independent of f and g.

Proof: Let € be the operator defined by (6.1.5). As we have seen in the previous
subsection, this operator realizes isomorphisms

Vi 5(K) = Wh g1y /a(€) and V5 2(0K) = W, 37 ,(80),
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where C denotes the cylinder  x R. By Theorem 5.2.2, the operator 2((9;) of the
boundary value problem (6.1.23), (6.1.24) is an isomorphism

T— m 1/2
Wé,,@—l+n/2(c) x Wé}__li/jm(ac) - Wé 52 l+n/2(c) x Wz B l+n/2(8c)

if no eigenvalues of A()) lie on the line Re A = —8 + I — n/2. Hence the operator
A(ro,) = €71 Q((c’?t) £ is an isomorphism
m+J

l+7' —1/2 1—9 l —u 1/2
Vi (K H 281m,  (OK) = Vo575 (K H 2B (OK).

Since the mapping u — ru realizes isomorphisms from Vi ﬁ(/C) onto Vi A LK)
and from Vl L/ ?(8K) onto Vl Y 2(OIC) we conclude that A is an isomorphism from
(6.1.17) onto (6.1.18). m

REMARK 6.1.1. By Lemma 5.2.5, the condition on the eigenvalues of 2(}) is
necessary for the validity of the estimate (6.1.25).

Note that the following formula for the solution (u,u) of problem (6.1.11),
(6.1.12) in the cone K is valid (cf. formula (5.2.25)):

1
(u,r™u) = 5 / AN T M (PP f, mEg) d
Re A\=—p+1-n/2
Here r~Zu denotes the vector (r~™wy,...,r ™uy), while rEg denotes the vector
(rtrgy, .o Pt gy g).

Solvability of the formally adjoint problem. Analogously to Theorem 3.1.1,
the following Green formula holds for all u,v € C§°(K\{0}), u € C§°(K\{0})7,
v € Ce(ak\{op)™+

(6.1.26) /Lu~vdm+/(Bu+Cg, V) gty dO
K oK

:/u-md:c—i-/(Du Pv+Q7 )C2md0+/(1_L,C+y)CJda
i oK oK

Here P is a vector of differential operators P;, j = 1,...,2m, ord P; = 2m — j,
which are uniquely determined by L.

LEMMA 6.1.6. If the operators L, By, C ; are model operators of order 2m,
Wi, and i, + 7, respectively, then all operators in the Green formula (6.1.26) are
model operators. More precisely,

(6.1.27) Lt (z,0;) =72 LT (w, 0., 7O;)

is a model operator of order 2m, P is a vector of model operators
(6.1.28) Pj(z,0;) = r~*™ 1 Pj(w,d,,r0)

of order 2m — j, QT is a matriz of tangential model operators
(6.1.29) Qf (x,0;) = r 71 QF (w,0,,70,)

of order py, — 7+ 1 on OK\{0}, and C* is a matriz of tangential model operators
(6.1.30) Ci(,0,) = r™# T CF (w, B, 70y)
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of order pi + 7; on OK\{0}. Furthermore, the Green formula

m+J
(6.1.31) /[Z)\)u vdw—l—Z/ Bk u-l—ZCk])\-{-‘rj)uJ) g ds
k=150
m+J
/u L+ (=X +2m — n)vdw+z i Y G (=X + pk + 1 — )ik ds
Q J= 139 k=1
m+J
+Z/D9 1a ( i (— )\+2m—nv+ZQ /\-l-,u;c—i—l—n)f)k)dg

=150

is satisfied for all 4,7 € C®(Q), & € C®(0N)7, v € C=(8Q)™+’. (For the sake of
brevity, we have omitted the arguments w and 0,, in the operators of this formula.)

Proof: Let @(w, ), @;(w, ), 9(w, A), Ox(w,A) be the Mellin transforms of the
functions u(w,r), r~ " u;(w,r), r" " v(w,r), and r" ey, (w, r) with respect to
the variable r. Then by Theorem 3.1.1, the Green formula (6.1.31) is satisfied for
each A, where L, P;, Qk j» and C,c are certain differential operators polynomially
depending on A, which are unlquely determined by £, B, and C. In particular,
LF(w,0,, =X +2m — n) is the formally adjoint operator to £(w,d,,)) on . We
integrate (6.1.31) with respect to A over the line A = i7, —oo < 7 < 400. Since
—X = )\ on this line, the Parseval equality (6.1.9) with 8 = 0 and the equality

(rdy + @) 1% = r~%* (rd,)7u

yield
m—+J J
/r”_1_2mﬁu ‘Vdwdr + Z / P <Bku + ZT‘_TJ Ck,juj)ﬁdg dr
&y k=10, j=1
m+J
=/ n=ly. T‘2m£+vdwdr+2/ Zr Mk TJC+ vy, ds dr
é, I=lac,
2m m+J
+Z / "2 (r7iD,) (F—ZWPJU—I- Z r—“kﬂ'—lQ;jvk) dg dr,
k=1

=tac,

where C;. = Q@ xRy, by £ we mean the operator L(w, d,,,70;), and the same abbre-
viation was used for the operators L1 (w,8,,70,), Bx(w, 0y, r0;), C ;(w, 8, T0;),
Pj(w,0u,10r), C,j,j (w, 0, 70r), Qk,;j(w, 0w, 70;). The change of coordinates (w,r) —
z leads to formula (6.1.26), where the operators L™, P, QT and C'* are defined by
(6.1.27)—(6.1.30). This proves the lemma. m

The boundary value problem

(6.1.32) Ltyo=f in IC,
(6.1.33) Pv+Qtv=g, Ctv=h ondk
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is called formally adjoint to the problem (6.1.11), (6.1.12). The operator A™ of this
problem continuously maps

m+J

(6.1.34) Vi 5(K) x H ‘/’21’;32777«"1'/-%"1‘1/2(8’(:)
k=1
into the space
2m ) J
(6135) ‘/zl,Zizm(]C) % H Vv2l“52m+]—1/2(8’<:) « H ‘/2l7EZm—T]+1/2(’C).
Jj=1 j=1

We denote the operator of the parameter-depending problem

(6.1.36) LT(w,0,,-A+2m—n)v=f inQ,
m+J
(6.1.37)  P;j(w,0,,—A+2m—n)v+ Z Q'{’j(w,aw, A+ pr+1-—n)v =g;
k=1
on I, j=1,...,2m,
m+J
(6.1.38) > Cfi(w,0u,-A+pmk+1-n)vg=h; ondQ, j=1,...,J
k=1

by A+ ()\). According to the Green formula (6.1.31), the operator 2F () is formally
adjoint to 2A(\). Hence the assertions of Lemma 5.3.2 are valid for At ()) if the
boundary value problem (6.1.11), (6.1.12) is elliptic in K\{0}. In particular, any
number ) is an eigenvalue of AT () if and only if Ay is an eigenvalue of the pencil
A(N).

By Theorem 6.1.1, the operator A™ realizes an isomorphism from (6.1.34) onto
(6.1.35) for arbitrary integer | > 2m if there are no eigenvalues of the operator
pencil A" (=X + 2m — n) on the line ReA = —8 +1 —n/2, i.e., if the line Re\ =
B—1+2m—n/2 does not contain eigenvalues of A* ()). Using the above mentioned
relation between the eigenvalues of 2(\) and 21 ()), we get the following assertion.

LEMMA 6.1.7. Suppose that the boundary value (6.1.11), (6.1.12) is elliptic
and there are no eigenvalues of the pencil A(X) on the line Re A = —14+2m —n/2,
where | is an integer, | > 2m. Then the operator AT is an isomorphism from
(6.1.84) onto (6.1.35).

6.1.3. Extension of the operator of the model problem. Our goal is
to construct an extension of the operator of the boundary value problem (6.1.11),
(6.1.12) to the space ‘7;,’;’” (K) x VQI;I_I/Q(GIC) with integer [ < 2m.

We start with the model operator L. Let [ be an integer, 0 < I < 2m. Then we
write L in the form

(6.1.39) L(z,0:)= > 0%La(z,0s),

|a|<2m—1

where L, are model operators of order < [. Analogously to Lemma 3.2.1, we obtain
the following result.
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LEMMA 6.1.8. Let L be the operator (6.1.39). Then the formula

(6.1.40) /Lu-ﬁda:: Z /La(:c,az)u-mdz

K |a|<2m—1
2m l
+ > /Dg-lu.mda+Z/D,{—lu P jvdo
J=l+1gx =15k

is valid for u,v € C$(K\{0}). Here P; are the same operators as in the Green
formula (6.1.26) and P, ; are model operators of order < 2m — j such that the
functional

!
v — Z/D,{‘lu P jvdo
i=1gxc

is continuous on V;’j‘ﬁ_ HK) for arbitrary u € V3 5(K) and arbitrary real 3.

Using formulas (6.1.26) and (6.1.40), we can construct an extension of the
operator L to the space V'Ql:;m(lC), I < 2m, as follows.

LEMMA 6.1.9. The operator

(6.1.41) Vb 2m () 3 (w, Duloxyfoy) = Lt € V)10 (K)
can be uniquely extended to a continuous operator
(6.1.42) Vya™(K) 5 (u,6) — £ € VPT5HK)", 1< 2m.
The functional f = L(u,$) in (6.1.42) is given by the equality
2m
(6.1.43) (F o)k = (, L)+ (65, Pv) o, v € V751K,
j=1

if 1 <0 and by the equality

2m
(6.1.44) (f,v)c = Z /La(a:,az)u- (—=0z)vdz + Z (¢, Pjv)ox

le|<2m—1 )¢ j=l+1
!
+Y (DI, P, v e VETSHK),
j=1

if 0 <1< 2m.

Proof: According to (6.1.26) and (6.1.40), the operator (6.1.42) is an extension
of the operator (6.1.41). The uniqueness of this extension follows from the density

of Vg (K) in V32 (K). m
Furthermore, by (6.1.16), the mapping
VE2(K) 3 (u,0) — Qo € V, & /2(0K), 1< 2m,
is an extension of the operator
Vo am (K) 3 (u, Dulorcy (0y) — Bular 0y € %%;n__ﬁ;,l,fz(a&).

Thus, we get the following theorem.



202 6. ELLIPTIC PROBLEMS IN DOMAINS WITH CONICAL POINTS

THEOREM 6.1.2. The operator

(6.1.45)  Vy g3, (K) x Vo5 E5n 2(0K) 3 (u, Dulaxc oy » u)

om—p—1/2
— (LU, Bulsx\ {0y + Cg) € ‘/é(?ﬂ—l+2m(lc) X Vz,ﬁ—zizm (0K)

can be uniquely extended to a continuous operator

(6.1.46) A VE2(K) x VIV (0K) — T5EmO(K) x v, £ (0K)
with | < 2m. This extension has the form

(6.1.47) (u, 8,u) — (L(u, ¢), Qp + Cu),

where L is the operator (6.1.42) described in Lemma 6.1.9 and Q is given by
(6.1.16).

REMARK 6.1.2. In the case [ < 0 the functional f = L(u, ) € VQ%TBl(K)* and

the vector-function g = Q¢ + Cu € V;,;&_lm(alC) in (6.1.47) satisfy the equality

(6.1.48) (f,v)c + (g,v)ox = (u, L)k + (¢, Pv+ QT v)ax + (u, CTv)ax

forallv e VQQTE {(K)and v € Vzi-;EH/Q(@IC). This means that the operator (6.1.46)

is adjoint to the operator
VEPSHK) x Vo T2 (0K) 3 (v,0) — (L0, Pulge oy + Q1o, CHo)
Vi a0 x (T Va3 00 v 570
j=1
of the formally adjoint problem (6.1.32), (6.1.33) if I <O0.

Analogously to Theorem 6.1.1, we obtain the following statement.

THEOREM 6.1.3. If the boundary value problem (6.1.11), (6.1.12) is elliptic
and no eigenvalues of A(N) are situated on the line Re A = —0 + 1 — n/2, then the
operator (6.1.46) is an isomorphism for arbitrary integer l.

Proof: The equation
A(u, ¢,u) = (f,9)
is equivalent to
2A(0%) (u, ¢, e My, e g) = (XM etlgy, ... ettt g ),

where 2(9;) is the operator of problem (6.1.23), (6.1.24) in the cylinder C which
arises from K via the coordinate change z — (w,t). By Theorem 5.3.2, the operator
A(8) is an isomorphism

1,2 I+7—1/2 ~1—2m,0 l—p—1/2
W2”@Tl+n/2(c) X W2,ﬁ—l+n/2(3c) - 2,ﬁ——l+n/2(c) x WZ,ﬂ—l+n/2(6C)

for arbitrary integer [. From this we conclude that (6.1.46) is an isomorphism for
arbitrary integer . m

The following regularity assertion for the operator A can be easily deduced
from Lemma 5.3.5.
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LEMMA 6.1.10. Suppose the boundary value problem (6.1.11), (6.1.12) is el-
liptic. If (u,¢,u) is an element of the space
71,2m I+7—
(6.1.49) V2™ () x Vy 573 (0K),
and
m l—pt1/2
(f,9) = Alu, &,w) € V2H000) x Vy 2 (0K0),

then (u, d,u) € V;Eﬁm(lﬂ ’;ﬁl/z(a/q. Furthermore,

6150) @ wlion < e (IFlg o + gl g

+ ”(u)isvﬂ)”l,ﬁ>a
where || - |1, denotes the norm in (6.1.49).

REMARK 6.1.3. Analogously to Lemma 5.3.4, there exists a constant ¢ such
that

(6.1.51) Z ||¢]HVL 3+1/2(3}C < C (Hullvz O(IC) + “L’LL”VL 2m O(K:))
7j=1

for each (u, ¢) € V5 2m()C). Therefore, the term || (u, ¢, u)||;, 5 on the right of (6.1.50)
can be replaced by the sum

“u”(/;:g(;c) + ”'I_ff”\/;;z—l/?(a;c) .

6.1.4. Asymptotics of the solution. Let A, be the eigenvalues of the oper-
ator pencil 2((\) with the geometrical multiplicities I, and the partial multiplicities
K1y~ -+ Kp,1,- Furthermore, let

() (W)
{Sojs’(pj, )} {(P]s ’(pljs7 ""'OJ,J, )}_7 1,...,1,, s=0,... .5, ,—1
be canonical systems of Jordan chains of 2(\) correspondlng to Au. As noted in

(1) (u)

Section 5.2, the functions ¢;°; and the vector-functions ¢ © are infinitely differen-

tiable.
We introduce the functions
S
(6.1.52) Upj,s = T z (logr)” %), (w),

—0

and the vector-functions u with the components

Lp,g,s
S

1
Ug;p,g,s = rutTa Z ;(bg’r) @él;)s s a=1,...,J

o=0
From Lemma 5.1.3 it follows that (wy,j,s, 7™ Ut jisr - - »7 7 UJip,j,s) are solutions
of the equation

A(rd,)(u,u) = 0.

Consequently, the pairs (u#,j,s,yu’j,s) are solutions of the homogeneous boundary
value problem (6.1.11), (6.1.12).
By means of Theorem 5.4.1, we obtain the following result.
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THEOREM 6.1.4. Suppose that the boundary value problem (6.1.11), (6.1.12)
is elliptic, the lines ReA = —0; +1; —n/2 (i =1, 2) do not contain eigenvalues of
the pencil A(N), and the strip —01 +11 —n/2 < Re A < —f2+ 12 —n/2 contains the
eigenvalues A1, ... ,An. If
(6.1.53) (u,u) € Vi, () x V3= 7%(0K)

is a solution of problem (6.1.11), (6.1.12) and
2

(£,9) € N (52" 00) x Vs (0K)),

=1
where ll > 2m, lz > 2m, ﬂl -1l > ﬂg — lz, then

N I, ku;-1

(6.1.54) (v, u) = Z Z Z Cuj,s (u#,j,s aﬁu,j,s) + (w, w),

p=1j=1 s=0
where ¢, ;s are constants and (w,w) € szlfﬁz (K) x V;i,tz_l/Q(BlC).

Proof: We consider u and u as functions of the variables w, t, where t = log r and
w are coordinates on the unit sphere. Then (u,e "tu;,... e "7tuy) is a solution
of problem (6.1.23), (6.1.24), i.e.,

(6.1.55)  A(8) (u,e M ug, ... e iuy) = (2™ f etrtgy, L etmrTtg )

Under our assumptions on (u,u) and (f, g), the function v and the vector-function

(e~"tuy,... e tuy) are elements of Wéfﬂl_llJrn/Q(C) and Wélgl_-lllii/Q(@C), re-
spectively, while the right-hand side of (6.1.55) belongs to the space
2
1;—2 li—u—1/2
ﬂ (W2,51$i+n/2 (€) x W27ﬁ1—11+”/2 (6C))
=1

Applying Theorem 5.4.1, we get the representation (6.1.54). m

By the same arguments as in the proof of Theorem 5.4.2, we obtain the following
generalization of Theorem 6.1.4.

THEOREM 6.1.5. We assume that the model problem (6.1.11), (6.1.12) is el-
liptic and there are no eigenvalues of the operator pencil A(A\) on the lines Re A =
—Bi+1; —n/2 (i = 1, 2), where ly, ls are arbitrary integers and f1 — 1y > B2 —1o. If

(u,8,u) € V5™ (K) x Vi~ 1(9K0),
is a solution of the equation A(u, ¢,u) = (f,g), where

2
1 _om L—pu—1/2
(£.9) € () (7527000 x vy o),

i=1
then there is the representation

N Iy k-1

(ua ?» ﬂ) = Z Z Z Cu.j,s (U'/»Lijs ,’Du“,j,s ’@u,j,s) + (w’%’ Q) )

p=1j=1 s=0

where (w,9,w) € V32™(K) x V5712 (9K).
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6.1.5. Formulas for the coefficients in the asymptotics. Using the co-
efficients formula for the model problem in the cylinder (see Theorem 5.4.3), we
can derive an analogous formula for the coefficients in the asymptotics of the solu-

tion of the model problem in the cone. Let X, be the eigenvalues of 2(\) and let

{(gog“s), go(f 2 } be the canonical systems of Jordan chains introduced in the previous

subsection. Furthermore, let

{8 83D} 0 1 o

be canonical systems of Jordan chains of the pencil 24T ()\) corresponding to the
eigenvalues A, such that the biorthonormality condition (5.4.17) is satisfied. Here
AT (\) denotes the operator of problem (6.1.36)—(6.1.38). Since AT () is the opera-
tor of an elliptic boundary value problem in 2 for every fixed A, both the functions
(g ") and the vector-functions 7,[;(” ) = ( §‘;)s, RYIC! 17j.s) are infinitely differen-
tlable (cf. Lemma 5.4.2).

We introduce the functions

yeos vnu,j_l

S

X m—n 1
(6.1.56) Upyj,s = =T Aut2 E ;(—logr) w;i) o)
o=0

and the vector-functions v, ; s with the components
(6.1.57)

S

X 1
Ukp,j,s = —r T Z ;(_ logr)? wk iJrs— a(w)’ k=1,... m+J
o=0

LEMMA 6.1.11. The pairs (v s,V p,j,s) defined by (6.1.56), (6.1.57) are solu-
tions of the homogeneous formally adjoint problem (6.1.32), (6.1.33).

Proof: We set wyjs = 2™ v, ;, and denote by w, ; ; the vector-function
with the components Wiipjs =T 1=kk Vkiu,js) k = 1,... ,m+J. From the assump-
tion that (zp%), ) (WJ)(,S ,d)(”)) is a Jordan chain of 2A*()\) corresponding to
the eigenvalue ), 1t follows that (wyjs,w, ;) is a solution of the equation

At (—rd,) (w,w) = 0

(see Lemma 5.1.3). This means that w,, ; s, w satisfy the equations

Wij,s
LY(rd,+2m—n)w,;s =0 inQ xRy,
m+J

P;i(ror +2m —n)w, ;s + Z Q;',j(r&r +pk+1—n)w,;s =0 ondQ xRy,
k=1

m+J

Z Clj,j("ar +pr+1—n) Whp,js =0 on 00 x Ry

k=1

(for the sake of brevity, we have omitted the arguments w, d,, in the operators L,
Pj, Q;:j, and C,;':j). Using the representations (6.1.27)—(6.1.30) for the operators
LT, P, QT, C* and the equality

(ro, + a)lr=%u =r=*(rd,)u

we obtain At (v, js,v, ;) =0 =
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THEOREM 6.1.6. Let the conditions of Theorem 6.1.4 be satisfied. Then the
coefficients in (6.1.54) are given by the formula

(6.1.58) Cugis = (Fs Vpjmy—1-8)i + (85 Yy g, —1-5)0K -
Proof: If (u,u) is a solution of problem (6.1.11), (6.1.12), then
(u,r Uy, ..., 7" uy)

is a solution of the equation (6.1.55) in the coordinates w, t. Applying Theorem
5.4.1, we get the representation (6.1.54). Here, by Theorem 5.4.3, the coefficients
Cu,j,s satisfy the equality

m+J

Cugis = (€™ fy Wi, c1-s)e + D (€% b g, w1 Jac,

k=1
where w,, ;s = e(® 2™ty . - and wy,, s = eIy o (Due to the different
assumptions in this theorem and in Theorem 5.4.3, the functions w,, ; s, W,y 5, here
have another sign as the functions v, ; s, Vg;u,;,s in Theorem 5.4.3. In Theorem 5.4.3

it was assumed that 8; < (2, while now (3 — [y is greater than Gy — [l5.)
The change of coordinates (w,t) — x yields (6.1.58). m

REMARK 6.1.4. Formula (6.1.58) is also valid for the coefficients c,, ;, of the
solution (u,$,u) in Theorem 6.1.5.

6.1.6. A formula for the coefficients in terms of the classical Green
formula. Now we consider the boundary value problem

(6.1.59) Lu=f ink,
(6.1.60) Biu = gy on OK\{0}, k=1,...,m,

where L is an elliptic model operator of order 2m and Bj are model operators
of order py < 2m which form a normal system on 9X\{0}. This system can be
completed by model operators By (k = m + 1,...,2m) of order pr < 2m to a
Dirichlet system of order 2m on 9K\{0}. Then the classical Green formula

/Lu-ﬁdw+Z/Bku'B;€+mvda = /u-L"‘vdm—l—Z/Bkeru-B;cvda
e k=151 ;C k=1gx

is valid for all u, v € C$°(K\{0}). Here Bj are model operators of order uj =
2m — 1 — pggm if k <m, and of order p), =2m — 1 — pp_p, if k> m+1, ie,

Bl (x,8,) = 7" By (w, 8, 70,).

Let the operators £, By, and LT be defined by (6.1.13), (6.1.14), and (6.1.27). Then
analogously to Lemma 6.1.6, the Green formula

/E(A)ﬁ - Ddw + Z/Bk(/\)ﬁ Bl (A +2m —n)ids
Q k=150

=/il‘ﬁ"‘(—x—l—2m—n)ﬁdw—|—Z/Bk+m()\)u‘l3;c(—x+2m—n)i’)dq
Q k=150
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holds for all @, & € C*°(Q). We denote the operator of the boundary value problem

LY (w,0,,~A+2m—n)v=f inQ,
B, (w,0,,~A+2m —n)v=g; ondQ, k=1,...,m,
by 27 (\). Furthermore, let A ()\) be the operator of problem (6.1.36), (6.1.37).

According to Lemma, 5.4.4, there are the following relations between the eigenvalues
and eigenvectors of the operator pencils AT (\) and AT ().

LEMMA 6.1.12. The pencils AT ()\) and AL (A\) have the same eigenvalues. Fur-
thermore, the elements (1o, %o), ... , (¥s,¥s) form a Jordan chain of AT (X) corre-
sponding to the eigenvalue X\, if and only if o, ... ,¥s is a Jordan chain of AL (X)
corresponding to the eigenvalue Xﬂ and

701 N —
=y TR+ 2m =)oy }BQ,

where T (A) is the vector of the operators Typ(A) = By, (w, 00, ), k=1,... ,m.
Let

{‘P } I, s=0,...,k,,;—1 and {wgi)’ (#))}j 1,..., 1., s=0,... ,k, ;—1

be the canonical systems of Jordan chains of the pencils 2((A ) and 91+( ) introduced
in the previous subsections. By Lemma 6.1.12, {1/1(” )} is a canonical systems of Jor-

dan chains of A () corresponding to the eigenvalue A, and the biorthonormality
condition (5.4.17) takes the form

o p+s+1
(6.1.61) o> = ( Au) Ojptstizgr Yio—p)g

p=0g= p+1

m o—p
+ Z (B(‘I)()\ 90§l2+s+1 —q? Z (Bk+m) )(—/\p +2m — n) wl(,l:f)—P_”)BQ)

v=0
6], 6s,nu,j—1—o
forj,l=1,...,1,,8=0,... ,k,;—1,0=0,...,8,; — 1L
Let wu, js, vy s be the functions (6.1.52) and (6.1.56), respectively. From
Lemma 5.1.3 it follows that the functions u, ;. are solutions of the homogeneous

boundary value problem (6.1.59), (6.1.60), while v, ;, are solutions of the formally
adjoint problem

L'y =0 in K, B'u=0 on dK\{0}.
Analogously to Theorem 5.4.4, the following assertion holds.

THEOREM 6.1.7. Suppose that the boundary value problem (6.1.59), (6.1.60)
is elliptic and By, ..., By, form a normal system of model operators on OK\{0}.
Furthermore, we assume that the lines ReA = —0; +1; —n/2 (i = 1, 2) do not
contain eigenvalues of A(N). If u € Vzllﬁ1 (K) is a solution of problem (6.1.59),
(6.1.60), where

FEVEIIMIO) NVEP(K),  geVy iyt oK) Nyt oK),
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ly > 2m, la > 2m, then there is the representation

N Iy Ku,—1

u = E E | Cujs Upgs W,
=

15=1 s=0

where w € V2 %, (K). The coefficients c, j s are given by the equality

m
Cu,j,s = (f: Up,j,fcu,j—l—s)lC + Z(gk, B;g+mvu,j,/w']—l—s)6’lc .

6.1.7. Solutions of the model problem for special right-hand sides.
Now we consider the model problem (6.1.11), (6.1.12) for functions f, g of the
form

(6.1.62) f o= 7~ ZmZ logr £ (w),

S

(6.1.63) g = TAO_”kZ;(logr)”g,(f)(w), k=1,...,m+J,
o=0 "

where f(©) € Wi=2™(Q), ¢\7) e Wi 2 (60).

LEMMA 6.1.13. Suppose that the model problem (6.1.11), (6.1.12) is elliptic
in K\{0} and f, gr are functions of the form (6.1.62) and (6.1.63), respectively.

Then there exists a solution (u,u) = (u,u1,... ,uy) of this problem which has the
form
S+K1 1
u = 71 Z = (logr)”u(”)(w),
o=0
Wl (@)
ug o= Ny oy (ogr)? w7 (),
o=0

where ul?) € WL(Q), uga) e Wyt 2(0Q). Here k1 = 0 if Ao is a reqular point
of the pencil A(\) and k1 is the mazimal partial multiplicity of Ao if Ao is an
etgenvalue.

Proof: By Lemma 5.1.6, there exists a solution

s+K1
(ww,t), w(w, b)) ="y %t" () (W), u' (w))
o=0 :
of the equation
A(8;) (w ehot Zal f(a (w), g(cr)(w))_

Applying the coordinate transformations ¢ = logr and (w,r) — x, we get the
assertion of the lemma. m
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6.1.8. Examples.

The Dirichlet problem for the Laplace operator in a plane angle. Let
K={(z1,20) €ER?: r>0,0< 0 < a}

be a plane angle with the sides y_ : # = 0, v+ : § = . Here r, 0 are the polar
coordinates of the point = (z1,z2) and « is a positive number less than 27. We
consider the problem

(6.1.64) —Au=f ink, U=g4+ On yi.

In polar coordinates this problem has the form

—(r3,)2u(0,r) — B2u(0,r) =F L r2f for0<f<a,
u(0,7) = g-(r), u(e,) = g4 (r).
Applying the Mellin transformation » — A, we get the boundary value problem
—@"(0) - Na@)=F for0<f<a,  @0)=g_, a(a)=g,.

The operator of this problem is denoted by 2A()). It can be easily verified that the
spectrum of the pencil 2(\) consists of the eigenvalue \; = jr/a, j = £1,42,... .
All of them are simple. The corresponding eigenfunctions are

©;(0) = sin ‘%‘2 .

Thus, as a consequence of Theorems 6.1.1, 6.1.4, the following statements hold.

1) The operator of the boundary value problem (6.1.64) realizes an isomorphism
Vi (k) = Va5 () x Vo' *(9-) x Va5 (14)

for 1 > 2 if and only if (I — 1 — B)a/m is noninteger or equal to zero.
2) Let u € V2l1ﬂ1 (K) be a solution of problem (6.1.64), where f € VQZEQ(IC),

g+ € Vzlfﬁ_zl/z(wt), Iy — B1 <l — Ba. If the numbers (I; — 1 — B;)a/7 are noninteger

or equal to zero for i =1, 2, then the solution u admits the decomposition
, . gm0
(6.1.65) u = ch rim/e sin = — +w,
J
where w € Vzlfﬂz (K) and the summation is extended over all integer j # 0 in the

interval (I — 1 — B)a/m, (la — 1= Ba)a/m).

We derive a formula for the coefficients ¢; in (6.1.65). The Dirichlet problem
(6.1.64) is formally adjoint to itself with respect to Green’s formula

/Au~ﬁdw+/u-@da=/u~Aﬂdx+/@-Eda.
Oov Ov
K oK K oK

Therefore, the coefficients c; can be calculated by means of solutions

v; = —r I/ %(0)
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of the homogeneous Dirichlet problem (6.1.64). Here ¢; = C; sin(jnf/c) are eigen-
functions of the operator pencil A} (X) = A(\) to the eigenvalue —jr/a satisfying
the biorthonormality condition (cf. (6.1.61))

[e%

1= /C'()\j) sin% ~Ej df = —2C; jTr/oz/sin2 % df = —jn C;.
0 0

Hence the coefficients ¢; in (6.1.65) are determined by the formula
Ov,
¢i = (fivi) —; (9+ ﬁ)ﬁ ,

where
1 . . jmo
v; = —rIm/e sin 2
VLS @
Here vy denotes the exterior normal to ..

The Neumann problem for the Laplace operator in a plane angle. We consider
the Neumann problem

(6.1.66) —Au=f ink, du =g+ on~vyi,
Ovy

where K is the same plane angle as above. Passing to polar coordinates r, 6, we
obtain

—(r8,)? u(8,r) — O2u(f,r) = F wf r2f for0<f@<a, r>0,
@w)(0,1) = G-() E —rg_(r), @u)(a,r)=Cr(r)H rgi(r) forr >0,
and the Mellin transformation » — A leads to the boundary value problem
") - Na@)=F for0<f<a, @0)=G_,i(ax)=0C.

We denote the operator of this boundary value problem by 24()\). The spectrum
of the operator pencil 2 consists of the eigenvalues A\; = jn/a, j = 0,%1,£2,...
which are simple for j # 0. The corresponding eigenfunctions are
jmé
©;(6) = cos -~

For j = 0 the eigenfunction ¢y = 1 has the generalized eigenfunction ¢y, = 1.
Thus the following assertions are true.

1) The operator of the boundary value problem (6.1.66) realizes an isomorphism
V3 (K) = V352 () x Vy 52 (v2) x Vy g2 (1)
for 1> 2 if and only if (I — 1 — B)a/7 is noninteger.
2) Let u € Vzl’lﬁ1 (K) be a solution of problem (6.1.66), where f € V2l,2ﬁ_22(lC),

9+ € Vzlfﬁ—zl/z('yi), l1 — B1 < lag — Bq. If the numbers (I; — 1 — B;)a/m are noninteger
fori=1, 2 and the interval

(6167) (ll —-1- ,31)(1/71' <j< (l2 —-1- ﬂg)a/ﬂ'
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does not contain the number j = 0, then the solution u admits the decomposition
; jmo
(6.1.68) u= ch ™/ cos —~ +w,
J
where w € Véfﬁz (K) and the summation is extended over all integer j in the interval

(6.1.67). If, however, j = 0 is contained in the interval (6.1.67), then the term co
in (6.1.68) has to be replaced by the expression

(6.1.69) co,0 +co,1 (1+logr).

The coefficients ¢; in (6.1.68) can be calculated for j # 0 by means of solu-
tions v; = —r~9"/%4);(9) of the homogeneous Neumann problem (6.1.66), where
¥; = Cj cos(jmh/a) are eigenfunctions of the operator pencil 2()) satisfying the
biorthonormality condition

e

:/L’(/\ ) cos—— ¢;df = —2C]j7r/a/cos2?d0: —jnC;.
0 0

Consequently, as for the Dirichlet problem, we obtain the coefficients formula

cj = (f,v)c+ Z(gi s V5 )y
+

for j # 0, where

1
v =-—1T T/ cos
Jm

371'9

We calculate the coefficients coo and cp1 in (6.1.69). For this we have to find a
Jordan chain g g, 0,1 of the operator pencil 2()) corresponding to the eigenvalue
Ao = 0 such that the biorthonormality conditions

P+s+1

Z/E E(Q) 1;000 pd0=108514 for s,0 =0, 1

p=07 q—P+1

are satisfied. Here £(0) = L£"(0) = 0, L"”(0) = 2. Since %o 0, ¥o,1 are constants,
we obtain 9o = 1/a and 99,1 = —1/a. Consequently, we get

o0 = (f,Uo,l),c + Z (Q:I:, 'UO,l),Yi )
Co,1 = f,Uoo -I-Z gi,voo

where

Vo,0 = —¢0,0=—a,

1
0,1 — (0,1 — 0,0 logr) = p (1+1logr).
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6.2. Elliptic boundary value problems in a bounded domain with
conical points

This and the following sections are concerned with boundary value problems
in a bounded domain with angular or conical points on the boundary. Here we
suppose that the coefficients of the differential operators are smooth outside the
conical points and satisfy certain stabilization conditions at the conical points. We
call such operators admissible. In this section we show that the operator of the
boundary value problem is continuous in weighted Sobolev spaces both of positive
and negative orders.

6.2.1. Weighted Sobolev spaces in bounded domains with conical
points. Let G be a bounded domain in the Euclidean spaces R™. We suppose
that there exists a finite set S = {z(1),... 29} of points on the boundary 6G
such that 9G\S is smooth (belongs to the class C°). Moreover, we assume that
for each of the points (™), 7 = 1,... , d, there exists a neighbourhood U, such that
GgNU, = K; NU,, where K, is an infinite cone with the vertex z(™). The cone K,
cuts out a set 2, on the unit sphere with center in z(”). Here the boundary 9%, of
Q. is a smooth manifold.

Let ¢, 7 =1,...,d, be infinitely differentiable functions in G equal to one in
a neighbourhood of z(") and to zero in G\U,. We set {; =1 —(; — - — {4 and
define the space VQL 5(G), where 8 = (B1,...,B4) is a vector of real numbers and
is a nonnegative integer, as the set of all functions on G such that {yu € Wi(G) and
CGrue Vi, (Kr), 7=1,...,d. Obviously the space V4 5(G) does not depend on the
choice of the cut-off functions (,. Equipped with the norm

d
lullv; o) = Ioullwyc) + D lISrullvg , iy

=1
the space VQZﬁ(Q) is complete.
Furthermore, we define I/;‘;l/ 2(89) for I > 1 as the space of traces of functions
from Vz{ﬂ(g) on 0G\S. The norm in ‘/21;31/2(89) is

”u”V;;l/z(ag) = inf {“U“v;,ﬁ(g) GRS VQL,,B(g)’ 'UIOQ\S = u} .

If I < 0, then let VQ’__I_,@(Q)*, 1/2’,;,1/2(69) be the dual spaces of V;jﬂ(g) and

Vg,—iEUQ(Q) equipped with the norms

eyt gy = sup {I(w,0)al = v € Vit s(@), Iolly ot gy =1}
and
—l+1/2
ull =172 ng) = sup {|(w v)og| : v e Vs 5209), Iolly, w1256 =1}

respectively.
Analogously to the space V;g in the cone K, we define the space Vzlg(g) for
integer | and nonnegative integer k as the set of all pairs (u, ¢), where

V! if | >
we 2£(g) . %fl >0,
V,L4(0)" i 1<,



6.2. ELLIPTIC PROBLEMS IN BOUNDED DOMAINS 213

and

k
b= (b1, dx) € [[ Vo' T/%(09), ¢; =Di lulag\s for j < min(k,1).
j=1
The norm in f/;g(g) is
k
”(u’_@)”f/;f:g(g) = “u”(/;:g(g) + Z ||¢j|lv2“—ﬁj+1/2(3g) )
j=1

where the norm in fglg(g) coincides with the Vz‘l 5(G)-norm if | > 0 and with the
V{iﬁ(g)*—norm ifl <0.

LEMMA 6.2.1. Let 8 = (B1,...,084), ¥ = (71,--. ,7a) be real d-tuples. If I >
1>0and B, — 1<, =1l fort=1,...,d, then the space V;,ﬁ(g) s continuously
imbedded into Vy* (G). If, moreover, | > 11 >0, B, =1 <~, —ly forT=1,... ,d,
then this imbedding is compact.

Proof: The continuity of the imbedding V 5(9) C Vglf,y(g ) is obvious. We prove
the compactness of the imbedding.

For the sake of simplicity, we assume that the set S consists of one conical point
(Y only. Then the norm in VQl 5(G) is equivalent to

1/2
lul| = (/ S 26t |D§;(a:)|2dx) ,
g lafi

where r = |z — 21|, Let M C {u € V3 3(G) : llull < co} be a bounded subset of
Vzl, 5(G). We have to show that 9 is precompact in VQLLY(Q), i.e., that for arbitrary

positive e there exists a finite e-net {u1,... ,un()} in M such that
2. i — U <

(6 2 ]‘) 1§?;1]I\}(E) “U u]”\/;yl’y(g) S €

for all u € 9.

Let 6 be a sufficiently small positive real number and
Gs={zeG: |z—2zP|>6}

Furthermore, we set x5(r) = x(6~!r), where x is an infinitely differentiable function
on R equal to one in the interval (0,1) and to zero in (2, +00). Since the support of
(1—xs) is contained in Gs, the set Ms = {(1 — xs)u : u € M} can be considered as
a bounded subset of the space W}(Gs) which is compactly imbedded into Wi (Gs).
Consequently, for each &’ > 0 there exists a finite e’-net {(1—xs)u1,... ,(1—xs)un}
in 9Ms, where u; € M, such that
. . !
lg}lgnN ”(1 - Xé)(u - u])|IW2‘1(g5) <e
for every u € 9. Hence

. . /
i (1= x6) (= )y g < 1)

with a constant ¢; independent of ¢’. Furthermore, the inequality

llxs (u — “J')”v;g(g) < 0r=t)=(B=D llxs (u — uj)”v;,,,(g) < ¢y sOr—l)—(B-1)
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is valid for every u € M, 7 = 1,... , N, where the constant cz is independent of 6.
Choosing 6, €’ such that cy co 6C7=1)=(B=1 4 ¢, () &’ < &, we obtain (6.2.1). Hence
2 is precompact in V;}W(g). L]

Similarly it can be proved that the imbeddings
- 11—1 2  rl, 7 y
V3 ?00) c vl 200),  Vg9) < VaL9)
are continuous if I > Iy, B =1 < v — |3 ~for T=1,...,d, ang compact if [ > [y,
B, — 1 < ~, — I,. Moreover, the space V;g(g) is dense in V;;’“(g) for I > Iy,
Br—1<~v—l;,7=1,...,d.

6.2.2. Formulation of the problem. We consider the boundary value prob-
lem

(6.2.2) L(z,0,)u=f in g,

(6.2.3) B(z,0;)u+C(z,0;)u=g on 9G\S,

where L is a differential operator of order 2m, B is a vector of differential operators
By, ord By < pg, and C is a matrix of tangential differential operators Cj ; on
0G\S, ordC; < pi + 7;. The coefficients of L, By, and Cy; are assumed to
be infinitely differentiable in G\S. Throughout this chapter, we suppose that the

orders (with respect to differentiation) of the operators By are less than 2m. Then
the vector B admits the representation

(6.2.4) Bu|og\s = Q(,8:) - Dulog\s ,

where Q is a (m+J) X 2m-matrix of tangential differential operators Qi ;, ord Qi ; <
e —3+1, Qr; =0if pp —5+1<0.

Furthermore, we suppose that the following condition analogous to the stabi-
lization condition in Section 5.5 is satisfied for the coefficients in a neighbourhood
of every conical point z(").

DEFINITION 6.2.1. The operator
(6.2.5) P(2,0:) = Y palz) 02
lee| <k

is said to be an admissible operator of order k in a neighbourhood of the conical
point (7 if the coefficients p, have the form

(6.2.6) Pa(z) = r1*F P (w,7)

in this neighbourhood, where p&o) is infinitely differentiable in £, x R, continuous
in Q, x R4, and

(6.2.7) (ro.) 82 (O (w, ) = pP(w,0)) =0 asr —0

uniformly with respect to w € €,. Here w are coordinates on the unit sphere with
center in (") and 7 = |z — 2(7)| denotes the distance to z(7).

If P(z,0;) is an admissible operator of order k with the coeflicients (6.2.6),
then the operator

P (z,8,) = Z rlel=k p©0) (), 0) 8

|| <k

is called the leading part of P at the point z(7).
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Analogously, admissible tangential operators on 0G\S and their leading parts
at the conical point (™) are defined.

Note that the order (with respect to differentiation) of an admissible operator
of order k can be strictly less than k.

The leading part P(")(x,d,) of the admissible operator (6.2.5) is considered
as a differential operator in the cone K,. Since 1%/ can be written in the form
> i<|a Pi(w; Ou) (rd,)?, the leading part P(") is a model operator in K.

Clearly, every model operator is admissible. Moreover, e.g., every operator
(6.2.5) with coefficients p, € C*(G) is admissible in a neighbourhood of each
conical point. In this case the leading part at the point z(7) is equal to

P(z(D,8,) = Y aa(zM) 02

la|=k

It can be easily verified that every differential operator of order k <[ with smooth
coefficients in G\S which is admissible in a neighbourhood of every conical point
2(7) continuously maps the space Vi 5(G) into V'Z{Z,k(g). Furthermore, condition
(6.2.7) ensures the validity of the following assertion (cf. Lemma 5.5.1).

LEMMA 6.2.2. Let P be an admissible operator of order k in a neighbourhood
of the conical point () and let € be a sufficiently small positive real number. Then
there exists a constant c. such that

[(P(@,02) = P72, 8)) ullyie ey < eellullvy, )

for every u € VQIﬂ(/CT) equal to zero outside the ball |z — (7| < & (extending u by

zero outside the ball |z — a:(T)l < g, the function u can be simultaneously considered
as a function in G and K.). The factor c. tends to zero as e — 0.

We suppose in the sequel that L, By, and Cy ; are admissible operators of order
2m, pi, and ui + 75, respectively, in a neighbourhood of each conical point z(7),
Outside S the coefficients of L, By, C ; are assumed to be smooth. Furthermore, we
suppose that the boundary value problem (6.2.2), (6.2.3) is elliptic, i.e., condition
(i) in Definition 3.1.2 is satisfied for each 2(*) € G\S and condition (ii) is satisfied for
each 2(0) € 9G\S, where the numbers u;, and 7; are the same as above. Obviously,
the operator A of the boundary value problem (6.2.2), (6.2.3) continuously maps
the space

(6.2.8) Vi 5(G) x V45 12(86)

into

(6.2.9) v;;am(g) x v, 2712 (09).

for I > 2m. Here Vl+T 1 %(89), V. 1/2(8Q) denote the products of the spaces

V;j{f‘”?(ag), j=1,...,J,and V;ﬁ“k_l/z(@g), k=1,...,m+ J, respectively.
Let (u,u) be a solution of the boundary value problem (6.2.2), (6.2.3). We
suppose that the support of (u,u) is contained in the neighbourhood U, of z(7),
Passing to the coordinates w, t, where t = logr = log |z—x(7)| and w are coordinates
on the unit sphere |z — z(7)| = 1, the pair (u,u) can be considered as a solution of
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a problem of the form (5.5.1), (5.5.2), i.e.,
(6.2.10) L(w,t,0,,0;)u =€ f inC,,

J
(6.211) By(w,t,0u,0)) u+ Y _ Crj(w,t,0.,0; + 7)€ 'u; = et*'gy on 0C,
j=1
k=1,...,m+J, inthe cylinder C, = 2, xR. From our conditions on the coefficients
of L, B, and Cy ; it follows that the coefficients of L, By, and Cy ; stabilize at
infinity.

6.2.3. Extension of the operator of the boundary value problem. By
Theorem 3.1.1, the following Green formula is satisfied for all u, v € C5°(G\S),
u € C°(0G\S)”, v € C§°(0G\S)™+7 .

(6.2.12) /Lu-ﬂdm—l— / (Bu+ Cu, U)me do
9G\S

= /u.L+vdx+ / (Du Pv+Qtv )(CZm do + / (H,C+Q)CJ do,
g 9G\S 9G\S
where P is a vector of differential operators of order 2m — j.

LEMMA 6.2.3. If L, By, and Ci ; are admissible operators of order 2m, pg,
and px + 7, Tespectively, then the operators LY, P, QT, and C* in (6.2.12) are
also admissible. More precisely: LT is an admissible operator of order 2m, P is
a vector of admissible operators P; of order 2m — j, Q is a matriz of admissible
operators Q:’j of order py —j+1 (Q;j =0ifur—j+1<0), and CT is a matric
of admissible operators C,:', j of order p, + ;.

Proof: Suppose that the support of (u,u) is contained in the neighbourhood U,

of (7). Then in (6.2.12) the domain G can be replaced by K. Using the coordinates
w,t which were introduced above, we get

Lu = e 2™ L(w,t,0,,0,)u, Bru = e #! By (w,t,0,,0;)u and
Ck,j’LLj = e~ (Brtm)t Ck,j (w,t, 0y, 3t)Uj R

where the coefficients of £, By, and Cy ; stabilize for ¢ — —oco. Hence there exist
differential operators LT, P,, C,’: j» and Q+ - such that the Green formula

m+J
/ (t,0r)u - wdwdT+Z/ Bktatu-i-zck]t8t+TJ)w]>wkd§dt

¢, k=1gc,

= /u-£+(t,8t+2m—n)wdwdt

Cr
m+J
+ Z / Dy(w) Pj(t,@ +2m —n)w +Z sz(t,c")t + g +1-— n)wk> de dt
Jj= 18C k=1

m-+J

+Z/¢] chjtat+#k+1—n)wkd§dt

j= 1(9C.,- k=1
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is satisfied (here, for the sake of brevity, we have omitted the arguments w, d,, of
the differential operators in this formula). The coefficients of the operators LT, P;,
C,jj j» and Q',:’ ; stabilize at infinity (see Section 5.5).

Setting w = e(* 2™ty and wy, = e~ 1=ty for k=1,... ,m + J, we obtain
the Green formula (6.2.12), where

LT (z,0,) = e ™ LT (w,t,8,,0;)

and analogous formulas are valid for P;, Cif ;, @ ;. This proves the lemma. m

By Lemma 6.2.3, the operator AT of the formally adjoint problem

(6.2.13) LTv=f ing,
(6.2.14) Pv+Qtv=g, Ctv=h ondG\S
continuously maps
m—+J
(6.2.15) vl H v, 2 (9g)
for | < 0 into the space
J

(6.2.16) 2 ,@ Q) x H V2 I+j— 1/2(89) H —lﬂnﬂ/z(ag)

j=1 7=1

In the same way as it was carried out for a model operator in the cone K (see
Lemma 6.1.9), the admissible operator L can be continuously extended to the space
\72{’[23"’(9) with [ < 2m. If 0 < | < 2m, then we write the differential operator L in
the form

L(I,az) = Z 8: La(x)az)>

|a|<2m—1

where L, are admissible operators of order < [. Analogously to Lemma 6.1.8, the
formula

(6.2.17) /Lu vdr = Z / (z,0:)u - (—0;)v dzx

|a|<2m— lg
+ Z /D7 by - PvdJ+Z/D3 'u - P jvdo
Jj= l+18g Jj= 169

holds for u,v € C§°(G\S). Here P; are the same operators as in the Green formula
(6.2.12) and P, ; are admissible operators of order < 2m — j such that the functional

!
v— Z/Df;”lu - P jvdo
jzlag

is continuous on Vzmﬁ (@) for arbitrary u € V (9) and arbitrary 8 € R

Using formulas (6.2.17) and (6.2.12), we obtain the following assertions (cf.
Lemma 6.1.9, Theorem 6.1.2).
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LEMMA 6.2.4. The operator
‘72m,2m "(g) 2 (U,DU'@Q\S) — Lu € ‘/QOﬁ (- 2m)1(g)

2,8—(1—2m)1
(here T denotes the tuple (1,...,1) € R%) can be uniquely extended to a continuous
operator
(6.2.18) Vya™(G) 3 (u,0) = f € VZm5HG)", 1<2m.
Here the functional f = L(u, ¢) is given by the equality
2m
(6.2.19) (fiv)g = (u, LT0)g + Y (¢5, Pjv) og» v € VoT54(9),
j=1
if 1 <0 and by the equality
2m
0220 (folo= Y. [ La(e0u T wde+ 3 (65, Polas
la|<2m—1 ¢ j=Il+1

1
+D_ (DI, Pju) g, v € V759,
j=1
if 0 <l < 2m.
THEOREM 6.2.1. The operator

2m,2m 2m+7—-1/2
(6221) VI (G)x VITHE 2 (0G) 5 (u, Dulagys , u)

= (L, Bulogs + Cu) € Vs _oy1(0) X Vi 17y11+(0)
can be uniquely extended to a continuous operator
(6.2.22) A :VPEMG) x ViETMA(0G) — VEMOG) x v, 2 (8G)
with | < 2m. This extension has the form
(u, 6, u) — (L(u, ), Q¢ + Cu)

where L is the operator (6.2.18) and Q 1is given by (6.2.4).
In particular, in the case I < 0 the functional f = L(u,¢) € VfTEl(Q)* and
the vector-function g = Q¢ + Cu satisfy the equality

(6.2.23) (f,v)g + (g, v)og = (u, LT v)g + (6, Pv + Q" v)ag + (u, CTv)ag
for allv e VQ%T[;Z(Q) and v € V, l;““”(ag).
Clearly, the restriction of the operator (6.2.21) to the space

(6.2.24) Vi) x Vy 57 %(89)
with [ > 2m is also a continuous mapping from (6.2.24) into
(6.2.25) Vi52m0(g) x v 227 %(09).

Therefore, the operator (6.2.22) is continuous for arbitrary integer I.

Formula (6.2.23) means that in the case I < 0 the operator (6.2.22) is adjoint
to the operator A of the formally adjoint problem (6.2.13), (6.2.14) which maps
the space (6.2.15) into (6.2.16).
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6.3. Solvability of elliptic boundary value problems in bounded
domains with conical points

The goal of this section is to prove the Fredholm property for the operator A of
the boundary value problem (6.2.2), (6.2.2) in weighted Sobolev spaces. To this end,
we derive an a priori estimate for the solutions and describe the relations between
the cokernel of the operator A and the kernel of the operator of the formaly adjoint
boundary value problem. Furthermore, we study the dependence of the index on !
and (.

6.3.1. A priori estimates for the solutions. We consider the boundary
value problem (6.2.2), (6.2.3) in the domain G. As in the previous section, we sup-
pose that there exists a set S of d conical points z(1), ... ,z(9 such that 9G\S is
smooth. For the sake of simplicity, it is assumed again that G coincides with a cone
K, in a neighbourhood U, of every conical point z().

A regularity assertion for the solution. In the beginning of this section we
prove a regularity assertion for the solution of the boundary value problem (6.2.2),
(6.2.3), where only the ellipticity of the problem in G\S is required.

LEMMA 6.3.1. Suppose that the operators L, By, Cy ; of the elliptic boundary
value problem (6.2.2), (6.2.3) are admissible. Furthermore, let ¢, n be smooth
functions with support in the neighbourhood U, of the conical point =™ satisfying
the conditions

¢(n=_¢, Diqag\‘g:Dang\g:O fori=1,2,...,2m—1.
If (u, ¢,u) is a solution of the boundary value problem (6.2.2), (6.2.3) such that

(63.1) n(u, 6,u) € V5T () x Vo i *(9K.),
and
- I—p+1/2
(6.3.2) n(f,9) € Va g O(:) x Vy gty (9K),
then ((u, ¢,u) € f/zljgif’ln(lCT) X Vzl;fﬂ/ 2(8K.,). Furthermore, the following esti-

mate holds with a constant ¢ independent of (u, ¢, u) :
633) 160Dl i, < e (1Mo mprone + gz,

+ ”n(u’faﬂﬂh,ﬁf;lﬁ,.)
Here || - ||i5,.x, denotes the norm in (6.3.1).
Proof: Obviously,
def

Al(w, ¢u) = (fP,gV) = ((f, 9) + [A 0w, ¢ w)
where [A, (] = A(—(A denotes the commutator of A and ¢. By the given conditions
on (u, ¢,u) and (f,g), the pair (f(l),g(l)) is an element of the space (6.3.2). Using
the coordinates w,t, where w are coordinates on the unit sphere |z — x(T)| =1 and
t =log|z — z(7)|, we get the equation
(6.3.4) A(t, 0;) ((u, ¢, e ™ ug, ... e uy)

= (e2mtf(1)a eultg:(ll)v s a€“m+‘]tg£72l-‘])v
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where

A(t,06) = WS a(Cr) X W2, 5(0C,)

“l—2m,0 l—p—1/2
- 2,5,—z+n/2(cf) x Wz,ﬂ,—z+n/2(aCT)

is the operator of the boundary value problem (6.2.10), (6.2.11). Since (f(l),g(l))
is an element of the space (6.3.2), the right-hand side of (6.3.4) belongs to the space

Al—2m+1,0 l—p+1/2
WQvﬂ:El-i—n/Q(CT) x Wg’ﬁ_r_l_i_n/g(aCT).

By means of Lemma 5.5.3, we conclude from this that ¢(u, @) € Wézljﬁn /2(Cr)

and (e tu; € Wétitllfn /Q(OCT) for j = 1,...,J. Furthermore a corresponding

estimate for (u,¢) and e~ ™’u; holds. This leads to the assertion of our lemma if
we return to the Cartesian coordinates. m

REMARK 6.3.1. Suppose that the function 7 in Lemma 6.3.1 is equal to one
in a neighbourhood of supp (. Then analogously to Lemma 3.2.3, there exists a
constant ¢ independent of (u, ¢, u) such that

2m
635 YKol < (lmullgzs ooy + I fllgs-2mogar,) )-
j:
Hence (6.3.3) implies the following estimate:
I<(w, & i1, 416, < ¢ (||ﬂf||x7;’5ir$;r1,0(;cf) Hlingllyi-erire o

Hinullgze g, + Inulyiz e )
(cf. Remark 6.1.3, Remark 5.5.1).

The operator pencils connected with the boundary value problem. Let the oper-
ators L, By, and Cy ; be admissible in a neighbourhood of the conical point 2(7).
By A, we denote the operator of the model problem

(6.3.6) L (z,0,)u=f  inK,,

J
(63.7) B (z,8:)u+ Y O ) (2, 82)u; = gx on 0K {2V}, k=1,...,m+/,
=1

where L(7), B,(CT), C’,E,Tj) are the leading parts of L, By, Cy; at the point z(7) (see
Definition 6.2.1).
We write the differential operators of problem (6.3.6), (6.3.7) in the form

L(z,8;) = 1" L (w,8,,78,), B (x,8,) =~ B (w,8,,7d,)
O\ (w,85) = 17477 € (w, 8, 70y),

where r = |z — z(7)| and w are coordinates on the unit sphere |z — z(")| = 1. By
A, ()\) we denote the operator of the boundary value problem

(6.3.8) LO(w,00,Nu=f inQ,
J
(6.3.9) B,(CT) (w, By N)u + ZC,(CT]) (W, Oy A+ 75)u; = g on 00,
j=1

k=1,... , m+J,
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where Q. is the intersection of the cone X, with the unit sphere |z — x(T)| =1.

A sharper estimate. Under the additional assumption that there are no eigen-
values of the pencil 2,(\) on the line ReA = -3, + 1 —n/2 for 7 =1,...,d, the
estimate in Lemma 6.3.1 can be sharpened.

LEMMA 6.3.2. Let the conditions of Lemma 6.5.1 be satisfied. Additionally we
assume that the line ReA = =0, +1 —n/2 does not contain eigenvalues of A (X).
Then every solution

(6.3.10) (u, ¢, u) € Va2 ™(G) x Va 57 /2(8G)
of the equation A(u, ¢,u) = (f,g) satisfies the estimate

(6-3'11) ”C(u’?v@)”l,ﬂr;ﬁr < c (”Cf“\'/zl;aimvo(fc,) =+ ”CQHVZL;%_I/Q((SIC,)

+ Infu 6, wlh-15. k. ),

where || - |l1,8.c. denotes the norm in the space (6.3.1) and the constant c is inde-
pendent of (u, ¢, u).

Proof: First we suppose that the support of ¢ is sufficiently small. Then the
norm of (A, — A) {(u, $,u) in the space

(6.3.12) TESEmO(,) x V, 22 oK),

is less than ¢[[¢(u, ¢,u)|1,6.;c, with a small positive real number ¢ (see Lemma
6.2.2). Under the assumptions of the theorem, the operator A, realizes an iso-
morphism from (6.3.1) onto (6.3.12). Since the commutator [A4,{] = A{ — (A
continuously maps

z 1, Qm(IC ) x l+f_3/2(5lcf),
into the space (6.3.12), it follows from the equation

Ar C(u, ¢, u) = ((f,9) + [A, (I n(u, ¢ u) + (A = A)((u, §, u)
that

6w, g wlpr, < (I lggmoce) + Il sirmor

lin(u, ¢ wlli-rs, . + €6, 6w, )-

The term € [|¢(u, ¢, w) (|15, ;x, on the right-hand side can be omitted if ¢ is sufficiently
small, i.e., the support of ( is sufficiently small.

Now let ¢ be an arbitrary smooth function with support in U, and let x be
a smooth function equal to one in a neighbourhood of (™) with sufficiently small
support. Then the estimate (6.3.11) with x( instead of ¢ is valid. Furthermore, by
Lemma 3.2.4, the estimate (6.3.11) with (1 — x)¢ instead of ¢ is valid. This implies
the desired inequality. m

From Lemma 6.3.2 and from the corresponding local a priori estimate for
boundary value problems in smooth domains (see Lemma 3.2.4) we can conclude
the following global estimate.
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THEOREM 6.3.1. Suppose that the operators L, By, Cy ; of the elliptic bound-
ary value problem (6.2.2), (6.2.3) are admissible and there are no eigenvalues of
A, (N) on the line ReA = =B, +1—n/2 for 7 = 1,...,d. Then every solution

(u,¢,u) € f/;f,m(g) X V;;Tl/ 2(8G) of the equation A(u, ¢,u) = (f,g) satisfies the
estimate

6313)  [@wowlhas < c(If o+ lgllyieva g

S [ In] P
where || - || ;g denotes the norm in the space (6.3.10).

REMARK 6.3.2. By (6.3.5) and Lemma 3.2.3, the term ||(u, ¢, %)||;—1,5,¢ on the
right-hand side of (6.3.13) can be replaced by

ellgg=ro gy + el e g,
Consequently, under the assumptions of Theorem 6.3.1, every solution
I+1—-1/2
(6.3.14) () € V4 5(9) x Vo 77 /%(8G), 1> 2m,

of the boundary value problem (6.2.2), (6.2.3) satisfies the inequality

6315)  lwwliog < e (Ifllygamig) + lgllyiurz g, + I wllim1 )
where || - ||; g,¢ denotes the norm in (6.3.14).

Necessity of the condition on the eigenvalues. Analogously to Lemma 5.2.5, it
can be shown that the condition on the eigenvalues of 2(.()) in Theorem 6.3.1 is
necessary for the validity of the inequality (6.3.13).

We assume that A is an eigenvalue of 2, ()\) on the line ReA = -8, +1—n/2

and (9@, @) = (o), <p§°>, ... ,cpf,o)) is an eigenvector of 2, (\) corresponding to
this eigenvalue. Let € be a sufficiently small positive real number such that
{zeG:jz—a| <2} ={z ek, |z -2 <2}

Furthermore, let T be a real number greater than |loge| and xr an infinitely
differentiable function on the positive real half-axis such that

T=1 > 2,

xr(r)=1 fore " <r<e, xr(r)=0 forr<e"
and
[(r8,) xr(r)| <¢;j forj=0,1,2,....
Here the constants c; do not depend on 7. We consider the functions
(6.3.16) { ufg = x7(r) ri" w(.o)(z)), ¢§.T.) =D P, i= 1,0 ,2m
uy = xr(r)r°t o (W), j=1,...,J,
where r = |z — z(")| and w are coordinates on the unit sphere |z — 2(7)| = 1.

Since (u(T), Q(T),Q(T)) =0 for |z — (7| > 2¢, there exists a constant c¢; inde-
pendent of €, T such that the inequality

1D, 6T, 6D 11,56 < erell(wT, 6™, u™)ly 5.0
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is valid. Furthermore, from the conditions on the coefficients L, By, Cy ; it follows
that

(A= A7) T, 60, w1 amo gy yi=imtr2 g

< oa(e) (™, ¢, w1 pg
where co(g) tends to zero as € — 0 (cf. Lemma 6.2.2).
Suppose there exists a constant ¢ such that the inequality (6.3.13) is satisfied
for every (u, ¢,u) € V; 174 Qm(g ) X VZ+T Y %(8G). Then for sufficiently small £ we have

(6317) W, 67, 1) g < 20 (WD, 78D gyt gy a2

for each triple (u(™), ¢, u(T)) defined by (6.3.16), T > —loge. It can be easily
seen that the left side of (6.3.17) tends to infinity for fixed € as T' — +00. On the
other hand, from the equation

A (r0,) X2 () 1 (,9) = 10U, (1B, + Mo) X2() (2, 0)
= mY % (r0 Y e (r) 249 (Ao) (2, )

Jz1

and from our assumptions on the function x7 it follows that the right side of (6.3.17)
is bounded by a constant ¢ independent of T'. Thus, we have proved the following
assertion.

LEMMA 6.3.3. If the line Re A = —(3,+1—n/2 contains eigenvalues of A, (\) for
at least one T, then there does not exist a finite constant ¢ such that the inequality

(6.3.13) is satisfied for each solution (u,$,u) € f/;g’”(g) l+T 1/2( 0G) of the
equation A (u, ¢,u) = (f, g)-

6.3.2. Relations between the adjoint operator and the operator of
the formally adjoint problem. We suppose that the operators L, By, Cy ; are
admissible. Then the operator

A (u,u) — (Lu, Bulspg\s + C’g)

of the boundary value problem (6.2.2), (6.2.3) continuously maps the space (6.2.8)
into (6.2.9) for arbitrary integer [ > 2m. Therefore, the adjoint operator .A* realizes
a continuous mapping from

(6.3.18) VIGE™G)T X V, L ag)
into the space

(6.3.19) Vip(G)" x Vy L5712 (06)
for [ > 2m. Furthermore, by Theorem 6.2.1, the operator

 72m,2m +1/2
Vimim(G) x V. ﬁm(ag) (v,iﬂ,y)*(ﬁv, Pv+Qtv, Cto)

_prl vaf 12 _(9G) va t2(86)

0
€ V +l1 +l1
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of the formally adjoint problem (6.2.13), (6.2.14) can be uniquely extended to a
continuous operator AT which maps

(6.3.20) 7y (G) x v, L 0g)

into the space
B 2m ] J
(63.21) V5. 1506) x [T va 55 7%09) < [] v 157 7 (09)

with [ > 0. Let T be the matrix of tangential differential operators defined by the
equality

Pulag\s =T - Dvlag\s, v € C(G\S).

From the admissibility of the operators P; it follows that the components T of
the matrix T" are admissible operators. If the differential operator L is elliptic and
admissible, then the operator T realizes an isomorphism

2m
H V2T£—|l;2m+;)—1/2 H V—l-‘ry 1/2 ag)

(cf. Remark 3.1.2). Repeating the proof of Lemma 3.3.1, we get the following
assertion.

LEMMA 6.3.4. Let (v,%,v) and (f, g,h) be elements of the spaces (6.8.20) and
(6.3.21), respectively, where | > 2m. Furthermore, let the functional F € Vzlﬁ (G)*
be defined by the equality

(6.3.22) (u, F)g = (u, f)g + (Du,g)og,  u€ Vs 4(G),
Then (v,1,v) is a solution of the equation
AT (v,9,0) = (f,9,h)
if and only if
A* (v,v) = (F) h)
and TY + Qtu=g.

Motivated by the representation (6.3.22) for the functional F' we introduce the
space Dé’f;(g) for integer ! and nonnegative integer k as follows (cf. the definition

of the spaces Dé’k in Section 3.3).
For | < —k we set Dlz’;,(g) = szi 5(G)", while for [ > —k the space Dé%(g) is
defined as the set of all functionals F' € V2"f_ 5(G)* which have the form

k
(6.3.23) (w, F)g = (u, flg + > (DS u,95)0g,  w€VE_5(9),
j=1

where f € 172’;2@), gj € VH'J 12(5g).

REMARK 6.3.3. Since the functional

—1
u— > (DI u,9;)ag
=1
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belongs to the space V;iﬂ(g)* for given g; € ‘/;,;j—l/z(ag), [ < 0, the space
Dé’f},(g) can be defined in the case —k < [ < 0 as the set of all functionals F' €
Vzlf_ 5(G)* which have the form

k

(u, F)g = (U, f)g + Z (DZ_l’LL,gj)@g» u € %If—ﬂ(g)a
Jj=—1+1

where f € 172‘,’2@), gj € Vgljgj_l/ %(8G). In contrast to (6.3.23), this representation
is unique.

The norm of the functional F' in the space Dé%(g) is defined as the infimum
of the sum

k
11l g29g) + Z; ”g_’i”\/zl;j_lﬂ(ag) ;
]:

where f, g; satisfy (6.3.23).
Note that, by our notation, the space Dé’,%(g) coincides with the space 1721,’2(9 )
for arbitrary integer I, i.e, with V3 5(G) for I > 0 and with Viiﬁ(g)* for I <O0.

From Lemma 6.3.4 it follows that the adjoint operator A* realizes a continuous
mapping from

(6.3.24) D;12m0(G) x vy T (ag)
into the space
(6.3.25) D"EMG) x V, T2 (06)

for arbitrary integer I.

6.3.3. A regularity assertion for the adjoint operator. Applying the
regularity assertion in Lemma 6.3.1 to the operator A% and using the relation
between the operators A* and A™ given in Lemma 6.3.4, we obtain the following
theorem (cf. Theorem 3.3.1, Corollary 3.3.1).

THEOREM 6.3.2. Suppose that the operators L, By, Cy ; of the elliptic bound-

ary value problem (6.2.2), (6.2.3) are admissible in a neighbourhood of each conical
—l+p+1/2

point (7). If (v,v) € D;Tgm’o(g) xV, g (0G) is a solution of the equation
A*(v,v) = (F,h) and (F,h) belongs to the space

—l4+q,2m —l+q—1+1/2
(6.3.26) D;alm(g) x v, e (ag),

where q is an arbitrary integer, ¢ > 0, and 1 denotes the vector (1,...,1) € RY,

—14+2m+q,0 —l+q+p+1/2
then (v,v) € Dz,—/a+qf (G) x V2,—B+qf (0G) and

1@ 0t 2m v, psat < € (IEB + 10,0 -t42m,-5)-

Here ||-||—i+2m,—p denotes the norm in (6.3.24), whereas the norm of (F, h) is taken
in the space (6.5.26).
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Moreover, for ¢ > 1 the pair (v,v) is a solution of the formally adjoint boundary
value problem (6.2.13), (6.2.14), where

(6.3.27) FeV, i (G) and ge Hv*;‘fq’l 12 (5G)

are determined by the equality
(6328) (U, F)g = (ua f)g + (DU,Q)BQ y UE CSO(E\S)

Proof: According to the assumptions of the theorem, the functional F' has the
representation (6.3.28) with f, g as in (6.3.27). By Lemma 6.3.4, there exists a
vector-function

2m
ve w5 0

such that (v,,2) is a solution of the equation A (v,,v) = (f, g, h). Hence from
S

Lemma 6.3.1 it follows that v € DZ—H;:%J{L]O(Q) vev, l;ﬁ‘l‘“”(ag) and the

desired inequality for the pair (v,v) is satisfied. m

Analogously, Theorem 6.3.1 implies the following a priori estimate for the so-
lutions of the adjoint equation.

LEMMA 6.3.5. Suppose that the operators L, By, Cy ; of the elliptic boundary
value problem are admissible in a neighbourhood of each conical point (7). Fur-
thermore, we assume that there are no eigenvalues of A.(\) on the line Re X =
—Br +1—n/2 forT=1,...,d. Then for every element (v,v) of the space (6.5.24)
the estimate

1 ll-tr2m,-5 < ¢ (4" @01+ 10,0l -t42m-1,-5)-

is satisfied. Here || - ||—i+2m,—p denotes the norm in the space (6.3.24), whereas the
norm of A*(v,v) is taken in the space (6.3.25).

6.3.4. The Fredholm property for the operator of the boundary value
problem. Now we prove the Fredholm property for the operator (6.2.22) of the
boundary value problem (6.2.2), (6.2.3). In the sequel, this operator will be denoted
by A; g. Furthermore, let

l m I1—2m+p+1/2
Afy t Vi (G) x V5 2 7(8G)
2m J
rl—2m, l—2m+j— l—2m—T7;+1/2
= Vo ™0(G) x [T Vo™ 7%(06) x T vag™ 7" *2(09)
j=1 j=1
be the operator of the formally adjoint boundary value problem (6.2.13), (6.2.14).
If I > 2m, then A, g can be identified with the operator
(6:329)  V35(9) x Vo5 %(09) 3 (u,w)

— (Lu, Bu|ag\5 +Cu) € VIZ™(9) x Vi &/ (86).

We denote the adjoint operator to (6.3.29) by A} 5. In the case l < 2m the operator

Aj 5 is defined as the restriction of A7 gt (2m_i)T %© the space (6.3.24).
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Moreover, we introduce the following three sets. The set N consits of all

e e N (B5n0) < V50" 09)
>2m

such that (u,u) is a solution of the homogeneous boundary value problem (6.2.2),
(6.2.3). Analogously, N is the set of all

~1,2m l=-2m+p+1/2
(v,%,0) € ﬂ (V2,6+li’(g) x V2,,B+lf (69))

1>2m

such that (v,v) is a solution of the homogeneous formally adjoint problem (6.2.13),
(6.2.14). Finally, we set

N ={(v,2) : (v,Dvlag\s,2) ENE“}

LEMMA 6.3.6. Suppose that the operators L, By, Cy ; of the elliptic boundary
value problem (6.2.2), (6.2.3) are admissible. Then the kernels of A; g, .Affﬂ, and

I g are finite-dimensional and depend only on 1 —1,..., B4 — l. More precisely,
we have
= + AT * N[k
ker A; g = Nﬁ_ﬁa ker A5 = Nﬁ_”», ker A} 5 = N—,@+(l—2m)i"

If additionally the line Re A = —8; +1—n/2 does not contain eigenvalues of A, (\)
forT=1,...,d, then the range of the operators A; g, Al‘fﬁ, and Aj 5 1s closed.

Proof: Since the domain of the operator A4, 41,647 18 contained in the domain of
the operator A, g, the kernel of A, ,; ;. 7 is a subset of ker A; 5. On the other hand,
from Lemma 6.3.1 it follows that every element of ker .4; 5 belongs to the kernel of
Ay g1 Henceker Ay g = A, 5, 7 for every I and every 3, i.e., ker A g = Nj_ 7.

If no eigenvalues of A, (A) lie on the line ReA = -3, +1l—n/2for r=1,... ,d,
then the a priori estimate (6.3.13) is satisfied. Therefore, by Lemma 3.4.1, the
kernel of A; g is finite-dimensional and the range of A; g is closed.

Obviously, for every tuple 3 = (81, ... , B34) there exists a tuple v = (1, ... ,74),
v > g (ie, v > B, forT=1,...,d), such that the line Re A\ = v, —I+n/2 does not
contain eigenvalues of 2. ()\) and therefore the kernel of A, is finite-dimensional.
Since ker A; 3 C A; ~, it follows that dimker A; 3 < co. Thus, we have shown that
the kernel of 4, s is finite-dimensional for arbitrary I > 2m, 8 € R

Analogously the assertions of the lemma for the operators Al";@ and A 5 hold. m

As a consequence of Lemma 6.3.6, we obtain the following theorem.

THEOREM 6.3.3. Suppose that the boundary value problem (6.2.2), (6.2.8) is
elliptic in G\S and the operators L, By, Ck,; are admissible. Furthermore, we
assume that there are no eigenvalues of A, (X) on the line ReA = —f, +1 —n/2
for 7 =1,...,d. Then the operator A,z is Fredholm. The kernel of A; g is the
finite-dimensional spaces Nﬁ—lT defined before Lemma 6.3.6, while the range of
Ay consists of all

(£,9) € V3 "™0(G) x Vy 57 /(90)
satisfying the condition

(6'3'30) (fiv)g + (g, 2)8(} =0 for all (’U,Q) € Niﬁ+(l_2m)f :
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Proof: Condition (i) in the definition of the Fredholm property (see Definition
3.4.1) follows Lemma 6.3.6. It remains to show that the cokernel of A, g has finite
dimension.

First let [ be not greater than zero. Then 4; 5 is adjoint to the operator

V2mol(G) x V_i+ﬁ+1/2(3g) 3 (v,2) — (Ltv, Pv+Qty, Ctu
2,—p 2,—p

2m
_ —l+7— —l—7+1/2
e Vit o(@) x (TTVath%(09)) x V5 155412 (99).

j=1
(see Theorem 6.2.1). The kernel of the last operator coincides with the finite-
dimensional set N'* o (l—2m)T" Since R(A;,) is closed, the equation A; 5(u, ¢, u) =
(f, g) is solvable in the space (6.3.10) if and only if condition (6.3.30) is satisfied for
all (v,v) € N* B(1—2m)T" This proves the Fredholm property of the operator A; g
for [ <0.

We assume now that { > 0. Then we conclude from the regularity assertion in

Lemma 6.3.1 that

R(Aig) = R(Ag 5 ) N (Vi52™0(G) x V, 2£71%(09)).

Hence by the first part of the proof, the pair (f, g) belongs to the range of 4; 5
if and only if f € 17;1;2’"’0(9), g € V;}_”z(ag), and the condition (6.3.30) is
satisfied for every element (v,v) of the finite-dimensional space N’* B (1—2m)T" This
proves the Fredholm property of the operator A; g for { > 0. m

Analogously the Fredholm property of the operator A} ; and A;fﬁ holds.

THEOREM 6.3.4. Let the assumptions of Theorem 6.3.3 be satisfied. Then the
operator A 5 is a Fredholm operator. The kernel of A 5 1s the finite-dimensional

space Ni,@—}-(l—?m)f’ while the range of Az‘,ﬁ consists of all

—12m —l—-7+1/2
(F,h) € D, 5" (G) x V, £7+1/%(99)
satisfying the condition
(u7 F)g + (27 E)BQ =0
for all (u,u) such that (u, Du|sg\s,u) € N7
THEOREM 6.3.5. Suppose that the boundary value problem (6.2.2), (6.2.3) is
elliptic in G\S and the operators L, By, Ck,; are admissible. Furthermore, we

assume that there are no eigenvalues of A, (\) on the line Re A = . +2m—1—n/2
for T =1,...,d. Then the operator Af:ﬁ is Fredholm. The kernel of this operator

is the space N;—lf’ while the range of A?"ﬁ consists of all

2m J
(f7 g, b) c VvQZHEQm(g) ~ H ~V2l’;]2m+‘7—1/2(8g) % H V;;Zm—ﬁ‘i‘l/2(ag).
Jj=1 j=1

such that
(fa u)g + (Qa _Q_s)@g + (ﬁv Q)ag =0
for all (u, ¢, u) € N—ﬂ+(l—2m)T-
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REMARK 6.3.4. By Lemma 6.3.3, the condition on the eigenvalues of 2, ())
in Theorem 6.3.3 is necessary for the Fredholm property of the operator A, g. If
this condition is not satisfied, then the range of the operator A; 5 is not closed (cf.
Lemma 3.4.1).

6.3.5. A property of the index. Now we study the dependence of the index
of the operator A; g3 on [ and 8. By Lemma 6.3.6, the index depends only on the
difference 8 — I1. For this reason, we fix an integer number [ > 2m in what follows.

On the structure of the solution.

THEOREM 6.3.6. Suppose that the operators L, By, C ; of the elliptic bound-
ary value problem (6.2.2), (6.2.8) are admissible in a neighbourhood of the conical
point (7). Furthermore, we assume that 8 = Biy---5Ba), ¥ = (v1,--- ,74) are
tuples of real numbers such that v, < B, and the lines ReA = =3, + 1 —n/2 and
ReX = —v, +1—n/2 do not contain eigenvalues of the pencil A, (N), 7 =1,...,d.
Let (u,u) € V;ﬁ(g) X 1/2{;1‘1/2(8@ be a solution of the boundary value problem
(6.2.2), (6.2.3), where (f,g) belongs to the space
(6.3.31) ViR (@) x Vp kT *(09).

Then there is the decomposition

(6.3.32) (u,u) = i ¢;Us + (w, w)

in a neighbourhood of the conical point (7, where c; are constants, K is the sum
of the algebraic multiplicities of all eigenvectors of A, (X\) lying in the strip —G, +
l—n/2 <Rel < —y, +1—n/2, (w,w) is an element of the space

I+7-1/2
(6.3.33) Vi (G) x V31T 12 (ag),
and U; are elements of the space VQI,B(Q) X 1/21’2141/2(8@ with support near (")

which satisfy the homogeneous equations (6.2.2), (6.2.8) in a neighbourhood of (™)
and are linearly independent modulo (6.3.33).

Proof: Let ¢ be an infinitely differentiable function with support in a sufficiently
small neighbourhood of z() equal to unity near (7). Then ¢ (u,u) satisfies the
equation

Al(u,u) = (f,gW),

where (f, gy = ((f, g) + [A, ¢] (u,u) and [A4,¢] = AC — A denotes the commu-
tator of A and {. By our assumption on ¢, the pair (f(l),g(l)) is an element of the
space (6.3.31) with support in a neighbourhood of (7). Passing to the coordinates
(w,t), where w are coordinates on the unit sphere |z—2(")| = 1 and t = log |z—z(7)|,
we get

At,0;) C(u,e ™ uy, ... e tuy) = (2™ ), e‘”tggl), .. ,e“m+th$iJ).

Here 2(t,0;) denotes the operator of problem (6.2.10), (6.2.11). Since the coeffi-
cients of A(t, ;) stabilize at infinity, we can apply Theorem 5.5.3 (see also Remark
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5.5.2). Thus, we obtain

(6.3.34) C(wu) =Y U + (ww),
j=1

where (w,w) is an element of

(6.3.35) Vi () x Va2 oK,

and Uy, ..., U, are linearly independent modulo the space (6.3.35). Without loss
of generality, we may assume that the supports of U; and (w, w) are contained in a
neighbourhood of (7). Otherwise, we multiply (6.3.34) by a function n € C§°(K,)
equal to unity on the support of ¢ and obtain (6.3.34) with nU;, n(w, w) instead of
Uj, (w,w). Since (1—n)U; belongs to the space (6.3.35) for j = 1,... , K, the vector-
functions nUy, ... ,nU. are also linearly independent modulo the space (6.3.35).
This proves the theorem. m

COROLLARY 6.3.1. Let 8 = (B1,..-,84), v = (M1,--.,74) be tuples of real
numbers such that v, < B, for 7 = 1,...,d. We suppose that the operators of
the elliptic boundary value problem (6.2.2), (6.2.3) are admissible and the lines
Red = =08, +1—n/2, ReXA = —y, + 1 — n/2 do not contain eigenvalues of the
pencil A (A) for 7 =1,...,d. Then the homogeneous problem (6.2.2), (6.2.3) has
not more than

d
K= Z k(D
=1

solutions in V§ 5(G) x V;;l_l/ %(8G) which are linearly independent modulo the space
(6.8.33). Here &™) denotes the sum of the algebraic multiplicities of all eigenvalues
of Ur(N) lying in the strip —fB, +1 —n/2 <Red < —y; +1 —n/2.

Proof: Let (., 7 =1,...,d, be infinitely differentiable functions equal to one
in a neighbourhood of z(") with sufficiently small supports. Then by (6.3.34),
every solution (u,u) € Vj 5(9) x Vzl’;z_l/ %(8G) of the homogeneous boundary value
problem (6.2.2), (6.2.3) admits the decomposition

(7

Grluw) = 3P UT + (™, w™),
j=1

where U, J(T), j=1,... k) are linearly independent modulo the space (6.3.33) and
(w™,w(™)) are elements of the space (6.3.33). Consequently, we obtain

d w(M
(6.3.36) (ww =33V U + (w,w),
7=17=1
. .
where (w, w) = Z(w(f),w(f)) + (1 —¢ — -+ — ¢q) (u,u) is an element of the space
T=1

(6.3.33). This proves our assertion. m

Dependence of the index on B. Let A; g be the operator of the boundary
value (6.2.2), (6.2.3) mapping the space (6.2.8) into (6.2.9). Furthermore, let
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{Z1,...,2Z4} C Vé,ﬁ(g) X V;;I_l/z((?g), g < K, be a maximal set of solutions
of the homogeneous boundary value problem (6.2.2), (6.2.3) linearly independent
modulo the space (6.3.33). Then every solution (u,u) € V3 5(G) x Vl+T 2(5G) of
the homogeneous problem (6.2.2), (6.2.3) satisfies a congruence

q
u) = ch Z; ( mod Vj . (G) x V;;I‘l/z(ag)).
=1

The set {Z1,...,Z4} is called a basis in ker A; g linearly independent modulo the
space (6.8.883).

As it was shown in the proof of Corollary 6.3.1, every element Z; of this basis
satisfies a congruence

(6.3.37) Z; = Z%S Us ( mod VZ{V(Q) Vl+7' 1/2(6‘9)),
s=1

where the set {Uy,...,Us} consists of the elements U](T) (r=1,...,d, j =
1,...,4) in (6.3.36) and (c; ) is a ¢ X k—matrix with rank equal to g. It may be
assumed that the matrix (c;s) has the form (D;, D3), where D; is a nondegenerate
q X g—matrix. Therefore,

D'z =(,, D7Dy U ( mod V¢, (G) x V4t 1/2(89)).

Here I, is the identity matrix and Z, U denote the vectors (Zi,...,Z;) and

(Uy,...,Uy), respectively. Consequently, with no loss of generality, we may as-
sume that
K
l T—1/2
(6.3.38) Z;i=Ui+ Y ¢sUs (mod Vi (G) x Vatz Y (ag))
s=q+1

Any basis {Z1,...,Z,} in ker A; g linearly independent modulo the space (6.3.33)
which has the representation (6.3.38) is called canonical. Henceforth, we assume
that some canonical basis is given.

LEMMA 6.3.7. Let the conditions of Corollary 6.3.1 be satisfied and let q be the
mazimal number of solutions of the homogeneous boundary value problem (6.2.2),

(6.2.3) in Vzl’ 5(G) x VH'T 1/2 (8G) which are linearly independent modulo the space
6.3.33). Then the equatzon A*(v,v) = 0 has exactly k — q solutions in
(

—1
(6.3.39) Vi) x Vo E T (00)
which are linearly independcnt modulo
-1
(6.3.40) ViG2MG) X V, 52 0g).

Proof: Let {Z;L} j=1,...p De a basis in ker A} _ linearly independent modulo the
space (6.3.40).

We show first that p + ¢ < k. Obviously, there exists a system {®s}s=1,.. p of
elements of the space (6.3.31) such that

(Z]T",@s) =6js for j,s=1,...,p and ((v,1),®,) =0 for all (v,v) € ker A} 4,

where (-, -) denotes the extension of the scalar product in Ly(G) x L2(8G)™ to the
product of the spaces (6.3.40) and (6.2.9). The last condition implies the existence
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of solutions Wy € i/:,{ﬁ(g) X Vzl:EI_I/Q(@Q), s=1,...,p, of the equation AW, = &,
(see Theorem 6.3.3, Theorem 6.3.4). Suppose there exists a linear combination

W = ics Ws +ids Zs
s=1 s=1

of Wy,... ,Wp, Z1,...,Z,; which belongs to the space (6.3.33). Then we obtain

q

0=(A"Z}, W)= (Z] ,AW) = ch )+ ds (2], AZs) =

s=1

for j =1,...,p. Furthermore, from the linear independence of 7, ... , Z, modulo
the space (6.3.33) it follows that dy = ... = dq = 0. Thus, Wh,... ,W,, Z1,...,Z,
are linear independent modulo the space (6.3.33). However, by Theorem 6.3.6,
every of the elements Wy,... ,W,, Z1,...,Z, satisfles a congruence of the form
(6.3.37). This implies p + ¢ < &.

We suppose now that p < k — ¢q. Since AU; = 0 in a neighbourhood of the
conical points (see Theorem 6.3.6), we can set

d],sz(AUs,Z]T") forj=1,...,p, s=q+1,... K

Let the vector (cq41,-..,¢c) € C*79 be a nontrivial solution of the system of the
equations

Y djses=0  (G=1,...,p).

s=q+1

Then (u,u) = cq+1Ugq1 + - + ¢, U, satisfies the condition
+y — L
(A(u,g),Z])—O for]—l,"‘ap

Consequently, (A(u,u), (v,v)) = 0 for all (v,v) € ker Aj . Therefore, by Theorems
6.3.3, 6.3.4, A(u,u) belongs to the range of 4; . This means that there exists an
element (w,w) of the space (6.3.33) such that Z;11 = (u,u) — (w,w) is a solution
of the equation AZ,1; = 0. However, then Z,...,Z,4; form a system of ¢ + 1
solutions of the homogeneous problem (6.2.2), (6.2.3) which are linearly indepen-
dent modulo the space (6.3.33). This contradicts our assumption. The proof is
complete. m

REMARK 6.3.5. By Theorem 6.3.2, the pair (v,v) is a solution of the equation
A*(v,v) = 0 in the space (6.3.39) if and only if (v,v) belongs to the space

m +1/2
(6.3.41) R ()R ~ i(09)

and (v,v) is a solution of the homogeneous formally adjoint problem (6.2.13),
(6.2.14). Therefore, under the conditions of Lemma 6.3.7, the homogeneous prob-
lem (6.2.13), (6.2.14) has exactly k — ¢ solutions in the space (6.3.41) which are

g)X /.L+1/2 (89)

—B+IT

Furthermore, the assertion of Lemma 6.3.7 leads to the following interesting
consequence for the index of the operator A.

2
linearly independent modulo V m P 1(

THEOREM 6.3.7. Suppose that the operators L, By, Cl, ; of the elliptic bound-
ary value problem (6.2.2), (6.2.3) are admissible in a neighbourhood of each conical
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point (7). If the lines ReA = —3 +1—n/2, ReA = —v, +1—n/2 do not contain
eigenvalues of the pencil A, (\) for T =1,... ,d, then

indA; g =ind A; , + &,

where k = kK + -+« + k@ and k(7 denotes the sum of the multiplicities of all
eigenvalues of U, () lying in the strip —3; +1 —n/2 <ReA < —v, +1—n/2.

Proof: By Theorems 6.3.3 and 6.3.4, the index of A, s is given by the equality
ind A; s = dim ker 4; 5 — dim ker A 5.

The analogous equality is valid for the index of the operator A;.,. We set ¢ =
dim ker A; 5 — dim ker A . Then from Lemma 6.3.7 it follows that

dim ker A}, = dim ker A7 5 + (k — q).
Consequently, we obtain
ind A; 3 = (¢ + dim ker A, ) — (dim ker A7, + ¢ — x) = ind A; , + .

The theorem is proved. m

A regularity assertion for the solution. From Lemma 6.3.1, Theorem 6.3.3, and
Theorem 6.3.6 we obtain the following two corollaries.

COROLLARY 6.3.2. Suppose that the operators L, By, Cy, ; of the elliptic bound-
ary value problem (6.2.2), (6.2.3) are admissible in a neighbourhood of the conical
points (7). Furthermore, we assume that B = (B1,--.,04), Y= (1,--- ,7V4) are tu-
ples of real numbers such that the closed strip between the lines Re A = —(,+1; —n/2
andRe X = —y, +la—n/2 (1,12 > 2m) does not contain eigenvalues of the pencil

A (N) forT=1,...,d. Then every solution (u,u) € Vzllﬁ(g) X V2{1ﬂ+1_1/2(89) of the
boundary value problem (6.2.2), (6.2.3), where (f,g) € ijfﬁm(g) ><V2l’27_&_1/2 (8G),
belongs to the space VZZZ,Y (G) x V;fjl_l/ 2(8G).

COROLLARY 6.3.3. Suppose that the operators L, By, Cy, ; of the elliptic bound-
ary value problem (6.2.2), (6.2.8) are admissible in a neighbourhood of the conical
points () and the representation (6.2.4) is valid for the vector B. Furthermore, we
assume that 8= (B1,..-,04), ¥ = (M, ,Ya) are tuples of real numbers such that
the closed strip between the lines Re A = —(3, +11 —n/2 and Re A = —y, + 1o —n/2,
where l1,ly > 2m, does not contain eigenvalues of the pencil A, (A) forT=1,... ,d.
If the operator of the boundary value (6.2.2), (6.2.3) realizes an isomorphism

A o VE(G) x VEFTT2(96) - VRS G) x vy E (),

then it realizes an isomorphism
lo+7—1/2 —2m la—p—1/2
Ay = V3(9) x VT 72(0G) — VA2 (G) x Vo 5 (0),
An analogous assertion is true if 1 < 2m or la < 2m.

Proof: Under the assumptions on the eigenvalues of the pencil 2, the kernels
of the operators A;, g and A, , coincide. Furthermore, the sets N** and

*
—v+(le—2m)T
the same dimension. m

B+(l1 —2m)T
coincide. Hence the cokernels of the operators A;, g and A;, , have



234 6. ELLIPTIC PROBLEMS IN DOMAINS WITH CONICAL POINTS

6.4. Asymptotics of the solution

In the last section we have proved a theorem on the structure of the solution for
the case of admissible operators. In this section we give a more precise description
of the functions U; which appear in the decomposition (6.3.32). For this we need
more restrictive assumptions on the coefficients of the operators in the boundary
value problem (6.2.2), (6.2.3). The condition of admissibility is now replaced by
the sharper condition of §-admissibility.

Furthermore, we derive formulas for the coefficients in the asymptotics. Again
G is a bounded domain with piecewise smooth boundary dG containing d conical
points z(1), ..., (. For simplicity, it will be assumed that for every conical point
(™) there exist a neighbourhood U, and a cone K, with vertex in z(™ such that
GNU, =K, NU-.

6.4.1. Decomposition of the solution of elliptic boundary value prob-
lems. The admissibility of the operators L, By and Cj ; does not suffice to obtain
a decomposition like (6.1.54) for the solution (u,u) of the boundary value problem
(6.2.2), (6.2.3). In the following, we consider the boundary value problem under
the stronger condition of 6-admissibility defined below.

DEFINITION 6.4.1. Let § be a positive real constant. The operator

(6.4.1) P(z,0:) = Y palz) 03

laj<k

is said to be a §-admussible operator of order k near the conical point (™ if the
coefficients are infinitely differentiable in G\S and in a neighbourhood of (") there
is the representation

Pa(@) = 1! (pP(w) + 1 p w,7))),
where r = |z — (7|, w are coordinates on the unit sphere |z — 2(7)| = 1, p&o) €
C>(%,), and p&) is an infinitely differentiable function in £, x R, such that

(6.4.2) | (r0,)? 82 pV(w, )| < €5y s weQ,, r>0,

for every multi-index v and every integer 7 > 0. Here the constants c;., do not
depend on w and r.
Analogously, the §-admissibility of tangential operators on 0G\S is defined.

FEzample. Suppose the coefficients p,, of the operator (6.4.1) belong to C*°(G).
Then the operator (6.4.1) is é-admissible with § = 1. For |a| = k there is the
representation

Pa(@) = pa(@) +rpD(w,r),  where p{)(w,r) = 7" (pa(®) = pa(z™)),
while for |a| < k we have
Pa(z) = rlol=Fk (0+ rpg})(w,r)), where p( (w, ) = r¥7171el p (),
in a neighbourhood of (™). It can be easily shown that the functions p,(ll) satisfy
condition (6.4.2).
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If P(z,8,) is a 6-admissible operator of order k near () and P(") is the leading
part of P at the point z(™) (see Definition 6.2.1), then there exists a constant ¢ such
that

(6.4.3) 1P = PDYullyi=r ey <ellullvg, g

for all u € VQZ,ﬂT (K;) with support in the neighbourhood U, of (M, 1 > k. This
inequality sharpens the estimate given in Lemma 6.2.2. Clearly, an analogous
assertion is valid for §-admissible tangential differential operators on 9G\S.

Let (") be a fixed conical point of the boundary dG and let 2, () be the opera-
tor pencil of the parameter-depending boundary value problem (6.3.8), (6.3.9).The
eigenvalues of this pencil are denoted by A,. Furthermore, let

{(wﬁ’?,so(“) }g 1,. =0,... K, j—1

be canonical systems of Jordan chains of QIT( ) corresponding to the eigenvalues
Au. We recall that the functions go(-“) and vector-functions
) (1)
292 (quﬁ"--’wﬁZs)
are infinitely differentiable in O and on 852, respectively.
As in Section 6.1, we introduce the functions

s

(6.4.4) Uy s =T Z — (logr)” ¥ ()
U—O
and vector-functions u,, ; ; with the components
S
(6.4.5) Ugpjis =TT Z (logr)° oW W), q=1,...,J.
o= 0

Then, as a consequence of Theorem 6.1.4, we obtain the following representation
for the solution of the boundary value problem (6.2.2), (6.2.3) near the point z(7).

THEOREM 6.4.1. Suppose that the operators L, By, Cy ; of the elliptic bound-
ary value problem (6.2.2), (6.2.3) are §-admissible near the conical point (7). Fur-
thermore, we assume that there are no eigenvalues of A, (A) on the lines Re A =
—B; + 11 —n/2 and Re A = —v, + Iz — n/2 and the strip —f3, + 11 —n/2 <ReA <
—r+1a —n/2 contains the eigenvalues A1, ... ,Ay. Herely, ly are integer numbers,
1y > 2m, ly > 2m, while B,, v, are real numbers satisfying the inequalities

0<(lo—v)—(Li—Br) <6

Let n be an infinitely differentiable function with support in U, equal to one in a
neighbourhood of (™). If (u,u) is a solution of the boundary value problem (6.2.2),

6.2.3) such that n(u,u) € Vi, (K,) x VIT"Y2(0K.) and n(f, g) belongs to the
Zaﬂr Z,ﬁ'r =

space

(6.4.6) V32 2 (K,) X

then there is the representation

lz H— 1/2
27

(OK-),

N I, kuj;—1

(647) 'LL U) Z Z Z Cu,j,s up,] s ;Qp, 7, s) + (W,w)

p=1j=1 s=0
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in a neighbourhood of =7). Here c, j s are constants and

(6.4.8) (w,w) € V§2, (K.) x V32 7 V2 (0K,).

Proof: Without loss of generality, we may assume that l; =l = [. Let ¢ be an

arbitrary smooth cut-off function equal to one in a neighbourhood of (™) satisfying
the equality ¢ = {. Then ((u,u) is a solution of the equation

A: ((u,u) = (f(l)’g(l))a
where A, denotes the operator of the model problem (6.3.6), (6.3.7) and

(FD,9D) = C(f,9) + ¢ (Ar = A) (1) + A (1) = CA-(u, ).
Since the operators L, By and Cy ; are d-admissible, the term

C(-A‘r - A)(U,Q) = C(AT - A)n(u’@)

belongs to the space Vzl’gf’fis(lCT) X V;,;%j/?(alq and, therefore, also to the space

(6.4.6). The same assertion is true for the term A,((u,u) — (A, (u,u), since this
term is equal to zero in a neighbourhood of z(7). Hence we can apply Theorem 6.1.4
and obtain the representation (6.4.7). m

Using Theorem 6.1.5, we get an analogous assertion for the cases I; < 2m,
lg S 2m.

6.4.2. Asymptotics for special right-hand sides. The asymptotic expan-
sion in Theorem 6.4.1 is valid if the difference of 5, —I; and -, — [y does not exceed
the number é. This is a strong restriction even for differential operators with infin-
itely differentiable coefficients. To obtain an asymptotic decomposition of the form
(6.4.7) without this restriction, we need more information on the structure of the
differential operators L, By, and Cj ;.

We suppose now that the coeflicients a,(z) of L have the representation

B S
(6.4.9)  aq(z)=rll—2m (a&o)(w) + Zr‘s‘ oM (w,logr) + r55+1as+1)(w,r))
=1

in the neighbourhood U, of the conical point z(7) | where 61,6,... 6,41 is a given
sequence of complex numbers such that

0<Red; <Redy <...<Reébs < (,67- —ll) — (’}’7- —lz) < RE(SS.H,

a? e 0=(Q,), al’, ... ,a’ are polynomials of logr with coefficients in C*°(%,),
and a‘(f +1) is an infinitely differentiable function in Q. x R4 which satisfies the
condition

(6.4.10) | (ré:)* 8 afj*’l)(w, )| < cuy

for every integer p > 0 and every multi-index +, where the constants c, . are
independent of w and r.

Analogous assumptions are imposed on the coefficients by.q, Ck,j;o 0of Bx and
Ck, 79 i.e.,

(6411)  bia(e) = o= (50 (w) + > b, (w,logr) + 1P bt (w, )

=1
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(6.4.12)

et gal@) = 7 (o) (w +Zr o) ol Togr) + P06l D w,7)),

where b;c L, cfc)j ., satisfy the same conditions as al).

Note that the operators L, By, Cl,; with the properties (6.4.9)-(6.4.12) are
(Re by — €)-admissible for arbitrary £ > 0.

Example. Let the coefficients a, of L be infinitely differentiable in G. Then
there is the representation

S
aa(z) =r*7 (30 rald@) et el D (wn),

1=2m—|c|

where al) € C>(Q,) for . = 2m — |a|,... ,s and a™ satisfies the condition

(6.4.10). (In the case |a] < 2m — s — 1 the terms r* ()( ) do not appear.)
Consequently, the operator L has the above property with the numbers 6, =
(e=1,...,8+1).

Furthermore, we suppose that the functions f and gx on the right-hand side of
the boundary value problem (6.2.2), (6.2.3) have the representations

q

(6.413)  f(z) =773 r7 fO(w,logr) + fOH)(z),

q
(6.4.14) gr(z) =rH* Zr g,(c )(w,logr) + g,(cqﬂ)(x), k=1,...,m+J,

=1
in the neighbourhood U, of z(™), where o1,... ,04 are complex numbers satisfying
the condition
—f-+1li—n/2<Reoc1 <...<Reoyg < -, +1lp—n/2,

flatl) ¢ Vzlf;zm(lCT), g,(cq+1) € Vzlfv:“k—lﬂ(alC ), and fO®), g,(:) (t=1,...,q) are
polynomials of logr with coefficients from W ~>™(Q,) and Wér“ =t/ 2(397), re-
spectively.
For an arbitrary given complex number A\g we denote the set of all sums
6=46,+--+6,
formed by the numbers 6, in (6.4.9) such that
Re(6 4+ Xo) < —vr + 12 —n/2
by A(Ao). Then the following theorem holds.

THEOREM 6.4.2. Suppose the boundary value problem (6.2.2), (6.2.8) is ellip-
tic in G\S and the coefficients of L, By, Cx; have the representations (6.4.9)-
(6.4.12) in the neighbourhood U, of the conical point (7). Furthermore, we as-
sume that the function f and the vector-function g = (g1,... ,9m+Js) admit the
decompositions (6.4.13), (6.4.14) in U, and the lines ReX = —B, + l1 — n/2,
ReX = —v; + 1o — n/2 do not contain eigenvalues of the operator pencil A, (N).
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Then every solution (u,uy,...,uy) € Vzllﬁ(g) X Vll+T 1/2( 0G) of the boundary
value problem (6.2.2), (6.2.3) has the representation

“_Z Z rAutoy wlogr)—l-z Z route (z)wlogr)-l-fw,

p=1 6EA()\”) t=16€eA(c,)

N a
uj = Z Z et +s 5135 (w,logr) + Z Z pritouts gzﬁ(w,logr) + w;

p=18cA(N,) t=16eA(0.)

in a neighbourhood of (7). Here \1,... , AN are the eigenvalues of % ()\) in the strip
—Br 1 —n/2 < ReX < = + 1y — /2, w € V2, (Ky), w; € V27 2 (0K,),
and uff()s, ugkﬂ s (k=1,2) are polynomials of logr wzth coefficients from W ()
and W2t ~12(0Q,), respectively.

Proof: Due to Lemma 6.3.1, it suffices to prove the theorem for [; = I, = L.
Let A, be the operator of the model problem (6.3.6), (6.3.7) in the cone K, and
let ¢ be an arbitrary infinitely differentiable function with support in U, which is
equal to one in a neighbourhood of z(7). By Lemma 6.1.13, there exists a solution
(v,v) = (v,v1,...,vy) of the equation

Ar (v,0) = (f,g) — (FFD, glo+1)
which has the form
q q
v = Zrm v (w,logr), v; = Z»ﬂfr"b v§.‘) (w,logr),
=1 =1

where v(*), v](b) are polynomials of log r with coefficients from W(Q,) and W(69,),
respectively. Then ¢((u,u) — (v,v)) satisfies the equation

(6.4.15) A C((uyu) — (v,0)) = C(f9MD, gD + (A - A,)(u,u)
+[AT’C] ((uaﬂ) - (v,y)).

Here [A;,(] = A.{ — (A, denotes the commutator of A, and ¢. Under the given
assumptions on the coefficients of L, By, C ;, the right side of (6.4.15) belongs to
the space

m —-1/2
V2l/312- R€51+€(K: )X ‘/2;8‘,- R661+e(a’CT)

with an arbitrary small positive ¢ which can be chosen such that the line Re A =
—(B-—Reé;+¢)+1—n/2 does not contain eigenvalues of 2, (A). Applying Theorem
6.1.4, we get

C(u—v) = Zr*ﬂ w* (w,logr) +w,

Cluj —vj) = erﬁnw;,u)(w,logr)jtwj, j=1,...,J,
m

where ), are the eigenvalues of 2, ()) which are situated in the strip

—Br +1—n/2<Red< —(8; —Reéb; +¢€)+1—n/2
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and w(), wg-“ ) are polynomials of logr with coefficients in the spaces W4(Q,) and

W2l+7j_1/ 2(89,), respectively. Furthermore, (w,w) is a solution of the equation
A‘r (w,w) = A’T C ((U,_@_) - (’U71}_))
Thus, in a neighbourhood of (™) the equation

A(w7ﬂ) = .A(’LL,Q) - AT(”:Q) - (A - AT) ((uaﬁ) - (W,w))
(f, gt ) — (A= A7) ((u,u) — (w, w))

holds. By our assumption on the coefficients of the operator L,

(L - L) (u—w) = (L — L) (v + Zr’\“w(“)>

is a finite sum of terms of the form
rote=2m o logr) and Mty logr),

where z is a polynomial of log 7 with coefficients in Wi~ ?™((2,). Analogous repre-
sentations hold for (By, — B\"))(u — w) and (Cj; — C,gTJ))(g —w).

Repeating this procedure with (w,w) instead of (u,u), we get the assertion of
the theorem in a finite number of steps. m

As a special case we consider the boundary value problem (6.2.2), (6.2.3) for
operators with coefficients in C°°(G). In this case §, = ¢ for ¢+ = 1,...,s and,

therefore, the following assertion holds.

COROLLARY 6.4.1. Suppose that the coefficients of the operators L, By, Ck ;
are infinitely differentiable in G and the boundary value problem (6.2.2), (6.2.3)
is elliptic. Furthermore, we assume that the lines ReX = =83, + 13 — n/2 and
ReA = —v, + 13 — n/2 do not contain eigenvalues of the pencil A, (\). If

—om lo—p—1/2
n(f,9) € Va2 P ™(K) x Voo B

(aICT))

where n is a smooth cut-off function with support in U, which is equal to one near
z(7)| then the solution (u,uy,...,uy) € Vzllﬂ(g) X V;};l‘l/?(ag) of the boundary
value (6.2.2), (6.2.3) admits the decomposition

N
u = Z Z pruth U k(w,logr) +w,

p=1 kK

N
u; = Zz'r‘)w+‘r]+k Ujuk(w,log ) + wj , j=1,...,J,
p=1 k

in a neighbourhood of (™). Here A, are the eigenvalues of the pencil 2, ()\) in the
strip =B + 11 —n/2 < ReX < —v; + lo — n/2, the summation in both formulas
is extended over the set of all nonnegative integer k < —v. +1—n/2 — Rel,,

w € Vzlf% (Kr), w; € Vzl;tf"_lﬂ(alCT), and g, Ujuk ore polynomials of logr

with coefficients from Wi (Q,) and Wzl”T’—l/ 2(89,), respectively.
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6.4.3. Formulas for the coefficients in the asymptotics. Now we derive
formulas for the coefficients c, j s in Theorem 6.4.1. While the singular functions
Uy j,ss Uy, s in (6.4.7) depend only on the operators L, By, Ck,; and on the geom-
etry of the domain near the conical point (7, the coefficients c,, ; s depend also
on the functions f and g; on the right-hand side of the boundary value problem
(6.2.2), (6.2.3). We show that they are linear functionals of f and g and give a
representation of these functionals. B

A formula for the coefficients which contains the solution of the boundary value
problem. Let )\, be the eigenvalues of the pencil 2,()\) and let

(o3 2t imt =ty

be the canonical systems of Jordan chains of QIT()\) corresponding to the eigenvalue
A, which were introduced in the beginning of this section. By 2} (\) we denote
the formally adjoint operator to 2, (), i.e., the operator of the formally adjoint
boundary value problem to (6.3.8), (6.3.9) (cf. (6.1.36)—(6.1.38)). Furthermore, let

(@), ¥} = {8, 0l e 50}

be canonical systems of Jordan chains of A+ (\) corresponding to the eigenvalues
Ay such that the biorthonormality condition (cf. (5.1.6))

o P+S+1
6 4. 16 Z Z Q[(q) ((p§‘2+s+1 —q X L 5 p)+s+1 q) (d)l(cl,g—;ﬁ w;cuc)r p)>
p=0 q—p+1

— 05k 6s,nu‘k—1—a

is satisfied for j = 1,... Iy, s =0,... ,ku; — 1,0 =0,... Kk, — 1. Here (-,-)2
denotes the scalar product in Ly(2,) x Ly(89,)™"7. By Lemma 6.1.11, the func-
tions

(6.4.17) Vpjos = — put2mon Z —logr)® (”)_ (w)
U“O

and the vector-functions v with the components

KON
(6.4.18)

S

X 1
Uk = =1 WIS T (log ) ) (@), k=1 m+ ],

k;j,s—o
o=0

are solutions of the equation
-A:rl— ('U,uyj,s"u j ) =0,

Yijs
where A7 is the operator of the formally adjoint model problem to (6.3.6), (6.3.7).

THEOREM 6.4.3. Let U, be a neighbourhood of the conical point =7, and let
¢, n be smooth cut-off functions with support in U, which are equal to one in a
neighbourhood of (") and satisfy the equality ¢n = (.

We suppose that the conditions of Theorem 6.4.1 are satisfied and (v,v) is a
solution of the equations

Ltv=0 @mGnU,,
Pv+Qtu=0, Cruv=0 ondGni\{z"}
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which has the form
(6419) ('va) = (vu,j,feu,]—l—saQﬂ,j,nu’j—l—s) + (U(l),y(l))a

where n(v), M) € Vf’fﬂTHl(ICT) X Vzﬁ,j;ﬁ_ll(alCT). Then the constants c, ;s in

Theorem 6.4.1 are determined by the equality
(6.4.20) Cugs = (L(Cu), v)g + (B(¢u) + C(Cu), y)ag .
-1

Proof: Let € be a sufficiently small positive real number and (. (z) = {(¢~'x),
ne(z) = n(e~'z). By the Green formula (6.2.12), we have

Hence the right-hand side of (6.4.20) is equal to
(L(C&-U),’U)g + (B(CEU) + C(CEH) ) 2)69 .

We write this expression in the form

(6.4.21)
(L(T)(CE'U:),’Uu,j,n‘w—l—s)KT + (B(T)(Ceu) + C’(T)(Ceﬁ),Q”,j,nu,jq—s)am
(L= L))+ (B =BG + (€~ CO)Cwn),
+ (L<T>(<;u>,v<“),g + (BT cw) + 00 (G )

By Theorem 6.1.6, the sum of the first two terms is equal to ¢, j ;. Furthermore,
it follows from the é-admissibility of L, that the third term does not exceed the
quantity

¢ ”CEU“V;IET(;CT) ’ ”anVfrT,ﬁHz(’Cr)

(cf. inequality (6.4.3)). Consequently, the third and analogously the fourth term
in (6.4.21) tend to zero as € — 0. Similarly, the fifth term is majorized by

. 1
¢ I|<€ul|vzl}ﬁ7(]cf) [[mv llVQ%TﬁT_Hl(K,) .

Therefore, the fifth and analogously the last term in (6.4.21) also tend to zero. This
proves the theorem. m

Representation of the coefficients by the right-hand sides of the boundary value
problem. Suppose that

»—2m lo—p—1/2
(£,9) € V257"™(G) x Vo, & (09),

where v = (y1,... ,74) satisfies the condition 8, — I3 — 6 < 7, —ly < B, — ;. If the

assumptions of Theorem 6.4.1 are satisfied for each index 7 =1,... ,d, then every

solution (u,u) € V;lﬂ(g) X V2l,1ﬁ+1_1/ %(G) of the boundary value problem (6.2.2),

(6.2.3) admits the representation

() _4
N‘r I"',u R#rj
(ww) = et Gr () 0 ull) ) + (w,w)
T=1p=1jj=1 s=0



242 6. ELLIPTIC PROBLEMS IN DOMAINS WITH CONICAL POINTS

with a function w € V;g(g) and a vector-function w € Vl2+T Y 2(G). Here ¢, are

smooth cut-off functions equal to one in a neighbourhood of z(") with support in
(r) ()

Ur, and uj o, u, ; o are functions of the form (6.4.4) and (6.4.5), respectively.
Let Uy, ... ,U, be an ordered set of the elements
G (00 20)
in this asymptotic decomposition. Furthermore, let V3,... ,V, be an ordered set of

the corresponding elements

G (003 8050)
defined by (6.4.17), (6.4.18). We say that the sets {U;}, {V;} are ordered compatibly
if
=¢, (uy; s,_ig o) simultaneously with V; = (UELTJ)',RN,j—l—s’QEZ;,M,J—l—s)'

LEMMA 6.4.1. Suppose the conditions of Theorem 6.4.1 are satisfied for each
T =1,...,d and the sets {U;}, {V;} are ordered compatibly. Furthermore, we
suppose that {Z;};=1,..q (0 < ¢ < k) is a canonical basis in ker A; g linearly

independent modulo the space Vzlg(g) X Vl2+T Y z(ag) (see Section 6.3) satisfying
the congruence

(6.4.22) Z,=Ui+ Y ¢ U (mod Vi (G) x V21127+1—1/2(8Q)>.
s=q+1

Then there exist solutions

(6.4.23) zyevym 1(9) % v,

u+1/2

iy 1(Bg) s=q+1,...,K,

of the homageneous formally adjoint boundary value problem (6.2.13), (6.2.14) sat-
isfying the congruences

(6.4.24)

q
o351 (o 2002V 09)

fors=q+1,... K

Proof: By Lemma 6.3.7 (see also Remark 6.3.5), there exist exactly x — g solu-
tions Zf,,,..., Z} of the homogeneous formally adjoint problem (6.2.13), (6.2.14)
in the space (6.4.23) which are linearly independent modulo

1(09).

From Theorem 6.4.1 it follows that these solutions satisfy the congruence

p+1/2

(6.4.25) vy f(9)xV, oy

—B+i T

5=V, (mod V2™, +(0) x VELLZ 1(69)).
=1

B+ T B+ T
for s=g¢+1,...,k with certain constants d; ;. Furthermore, we have
d
0= AZJaZ+ Z :_)+(A(COZJ)aZ:—) y

T=1
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where (o = 1 —(; — -+ — {4 and (-,-) denotes the scalar product in L2(G) x
Ly(0G)™*7. Obviously, the last term on the right-hand side is equal to zero. The-
orem 6.4.3 yields

d K
Z A(C‘F ) =Es,j + Z cj,kas,k

=1 . k=q+1

Therefore, the coeflicients d; ; satisfy the equalities

stkcy, for j=1,...,q, s=q+1,... ,k
k=g+1
i.e., the matrix D = (ds,;)s=q+1,... ,x, j=1,... ,« has the form
D=D-(=C*, I.—,),

where D, C are the matrices D = (ds k)s k=g+1,...,x, C = (cj,k)jzlyu_)qykztﬁ.;l,,._,,i

and I._, denotes the (k — q) x (k — q) identity matrix. Since Z s 2t are
linearly mdependent modulo the space (6.4.25), the rank of the matrix D is equal to
k—q. Hence D is a nondegenerate matrix and in the space spanned by Z. atir 12 +

it is possible to choose a basis such that the congruence (6.4.24) is valid. This proves
the lemma. =

Now we proceed to the main theorem.

THEOREM 6.4.4. Suppose that the conditions of Theorem 6.4.1 are satisfied
for every T = 1,...,d and Zi,...,Z, is a canonical basis in ker A;, 5 linearly
independent modulo

(6.4.26) Viz () x V32T 2(0g).

Furthermore, we assume that (f,g) is an element of the space
m ly—p—1/2
V3 2(G) x Vo, T (89)

such that the problem (6.2.2), (6.2.3) is solvable in (6.4.26). Then for any constants
€1,...,¢q there exists a solution (u,u) € V2llﬁ(g) X V;!;;“I‘W(ag) of the problem
(6.2.2), (6.2.3) satisfying the congruence

(6.427)  (wu) = ZCJU + Z d, U, (mod V2 (G) x V2t 1/2(ag))

s=q+1

The constants ds are determined by the equalities

q
(6.4.28) ds = (£,0)g +(guog + D cicjs, s=a+1,... .k
j=1

where the constants c;j s are the coefficients in the congruence (6.4.22) and Z} =
(v®), (%)) are solutions of the homogeneous formally adjoint problem (6.2.13),
(6.2.14) in the space (6.4.23) such that the congruence (6.4.24) is satisfied.
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Proof: The existence of (u,u) is obvious. If (w,w) is a solution of problem
(6.2.2), (6.2.3) in the space (6.4.26), then

(u,u) = (w,w) + zq:'?j z;

is a solution of (6.2.2), (6.2.3) satisfying the congruence (6.4.27).
Now let (u,u) be a solution of the problem (6.2.2), (6.2.3) such that the con-
gruence (6.4.27) with the given constants ci,. .. , ¢4 is satisfied. Then the solution

q
(w,w) E (wu) - ¢ 2
j=1

satisfies the congruence

K

(ww)= Y U, (mod Vi2(G) x =72 (ag) ),
s=q+1

where ¢, = d; — 25:1 ¢j ¢j 5. Furthermore, let ¢; be smooth functions with support

in U, equal to one near ("), 7 =1,... ,d. Weset (s =1—( —--- — (q. Then we
have
d
(1,0 + (9,2)sg = 3 ((L(6w),v) g + (BGw) + Cl¢ru),0) o).
T7=0

By the Green formula, the term with 7 = 0 on the right-hand side vanishes. There-
fore, from Theorem 6.4.3 it follows that the right-hand side of the above equality
is equal to ¢. Consequently, we get

q
¢ =ds =Y e = (f,v)g + (g,2))ag
j=1

This proves the theorem. m

6.4.4. Coefficients formulas in terms of the classical Green formula.
Now let the boundary value problem

(6.4.29) Lu = f in G,

(6.4.30) Bu = g ondg

be given, where L is an elliptic differential operator of order 2m and B is a vector
of differential operators By (k =1,... ,m) of order ux < 2m which form a normal

system on 0G\S. This system can be completed by differential operators By (k =
m+1,...,2m) of order px < 2m to a Dirichlet system of order 2m on dG\S. Then
the classical Green formula

/Lu~ﬁdx+Z/Bku-B;c+mvda=/u-L+vd:c+Z/Bk+mu-Bchda

G k=lgg G k=l5g
is satisfied for all u, v € C§°(G\S). Here B are differential operators of order
W =2m —1 — pgqm for £ = 1,...,m and of order pj, = 2m — 1 — pg_,, for
k=m+1,...,2m. As before it is assumed that the operators L and B are

§-admissible near z(7). Then the operators L+, Bj, are also 6-admissible.
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As in the previous subsection let

{@gfg}j:l,...,Iu,s=0,...,l€,_,,,J—1 and {(’Qb;fs),lbﬂg‘f;))}j:l,...,I#,S=O,<..,R,_,,]—1

be canonical systems of Jordan chains of %, ()) and A (X\) corresponding to the
eigenvalues )\, and A,, respectively, which satisfy the biorthonormality condition
(6.4.16).

Using Theorems 6.4.1 and 6.4.3, we obtain the following result (cf. Theorem
6.1.7).

THEOREM 6.4.5. Letu € V;}ﬁ(g), Iy > 2m, be a solution of the elliptic bound-
ary value problem (6.4.29), (6.4.30), where

n(f,g9) € Vi22™(K,) x Vy 272 (0Kr), a2 2m, 0< (la =) — (L — Br) < 6.

Here 1 is a smooth cut-off function equal to one near =™ with support in U,. We
suppose that there are no eigenvalues of the pencil A (\) on the lines Re A = -0, +
I1—n/2, Re A = —v,+ls—n/2 while the strip — 3, +l1—n/2 < ReA = —y,+la—n/2
contains the eigenvalues A1, ... ,An. Then u has the representation

N I, ku,-1

(6.4.31) u= Z Z Z Cpjys Upj,s T W

p=1j=1 s=0
in a neighbourhood of the conical point z(7) | where Cu,j,s are constants, the functions

Up,j,s are given by (6.4.4), and w € Vzlz% (K;). The coefficients ¢, ;s in (6.4.31)
are determined by the formula

(6.4.32) Cps = (L(CW), ) + D (Be(Cu) s Biym®) g -
k=1

Here ¢ is an arbitrary smooth cut-off function equal to one in a neighbourhood of
(™) such that (n = ¢ and v is a solution of the homogeneous formally adjoint
boundary value problem
(6.4.33) Ltv=0 ing, Biv=0 ondG\S (k=1,...,m)
which has the form

V= Vpgik,,—1-s T @ , nv(l) € ng,Tﬁ,Jer(’CT) ,
where v, ; s is given by (6.4.17).

Proof: The first assertion follows immediately from Theorem 6.4.1. We show
the validity of formula (6.4.32).

Let v be a solution of the homogeneous formally adjoint problem (6.4.33) of the
given form and let vy, = By, v|ag, k = 1,... ,m. Then (v,v) = (v,v1,... , ) is
a solution of the homogeneous formally adjoint (with respect to the Green formula
(6.2.12)) boundary value problem

L*v=0 ing, Puv+Q*u=0 ondG\S

(cf. Lemma 3.1.1). This solution has the form (6.4.19). Applying Theorem 6.4.3,
we get (6.4.32). m

Analogously, the assertion of Theorem 6.4.4 can be modified. Suppose that
l2 —E— 1/2

(f,9) € V3272™(G) x V2, (0G)
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and the assumptions of Theorem 6.4.5 are satisfied for every 7 = 1,...,d. Then
every solution u € V2llﬁ (G) of the boundary value problem (6.4.29), (6.4.30) has the
representation

d N, Iy syl
()
Z Cujs G U ,Js+w’
7=1p=1j=1 s=0
where (, are infinitely differentiable functions equal to one near z(7, uﬁz , are

functions of the form (6.4.4), and w € V;%(g)

Let Uy, ..., U, be an ordered set of the elements ¢ LT; sandlet Vi,... V. be

the set of the correspondlng elements (T defined by (6.4.17) such that {U;}

and {V;} are ordered compatibly.

;us

THEOREM 6.4.6. We assume that the conditions of Theorem 6.4.5 are satis-
fied for every T =1,...,d and Z1,... ,Z, is a canonical basis in ker A; g linearly
independent modulo 1/'21"'7(9) satisfying the congruence

Zj EU]+ i Cj,sUs (mOd ‘/gfy(g))

s=q+1
If the problem (6.4.29), (6.4.30) is solvable in Vgg(g) for the given elements f €
V2’f;2m(g) g € V2l27 B 1/2(89), then for any constants ci,...,cq there exists a

solution u € vzﬁ(g) satisfying the congruence

u—Zc]U + Z d,U, (mod V42(G) ).

The constants ds are determzned by the formula

m q
= (/v g+ gk s Birmv™)og + Y i s,
i=1

k=1

where v(®) are solutions of the homogeneous formally adjoint problem (6.4.33) which
satisfy the congruence.

q
v =V =5V (mOd Voo, 1(g))
j=1

(Such solutions v®) always exist, cf. Lemma 6.4.1.)

6.5. Boundary value problems with parameter in domains with conical
points

This section is devoted to elliptic boundary value problems with parameter in a
bounded domain with conical point. Such problems play a crucial role for the study
of elliptic boundary value problems in domains with more complicated singularities
on the boundary (edges, polyhedral vertices, cuspidal points).

Parameter-dependent problems in smooth bounded domains have been already
studied in Section 3.6. The main result of that section was the unique solvability
for purely imaginary parameters with sufficiently large modulus and an a priori
estimate for the solution in parameter-dependent norms. The goal of this section is
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to obtain an analogous result for domains with conical points. In the beginning we
consider the parameter-dependent model problem in a cone. We state the condi-
tions under which the model problem with purely imaginary parameters is uniquely
solvable in a certain class of weighted Sobolev spaces and derive a priori estimates
for the solutions.

6.5.1. The model problem with parameter in a cone.

Ellipticity of the model problem with parameter. Let K be the same cone as in
Section 6.1. A differential operator P(z,d,,u) is said to be a parameter-depending
model operator of order k in K if P has the form

P(.’B, az,ﬂ') = T_k P(wa 60.1) 7’(97-, 7"/1,) = T_k Z Pi,j (w7 8&)) (’,',U')z (Tar)j )
i+j<k

where p; ;(w,d,,) are differential operators of order < k — i — j with smooth co-
efficients in Q. Analogously, parameter-depending model operators on 9/C\{0} are
defined.

We consider the boundary value problem
(6.5.1) L(z,0p,m)u=f in K,
(6.5.2) B(z,0z,p) u+ C(x,0z,p) u =g on dK\{0},
where L is a parameter-depending model operator of order 2m, B is a vector
of parameter-depending model operators By of order ug, and C is a matrix of
parameter-depending model operators Cy ; of order up + 75, j = 1,...,J, k =
1,...,m+J, which are tangential on 9KC\{0}. We will always assume that every of
the operators By contains only derivatives of order less than 2m. Then there exists

a (m+J) x 2m-matrix Q(z, 0, u) of tangential parameter-depending operators on
0K\{0} such that

(6.5.3) B(z, 05, 1) u |8K\{0} = Q(z, 0z, 1) -Du|6,c\{0} .

Let A(u) denote the operator of the boundary value problem (6.5.1), (6.5.2)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>